Nashine, Hemant Kumar; Ibrahim, Rabha W.; Rhoades, B. E.; Pant, Rajendra Unified Feng-Liu type fixed point theorems solving control problems. (English) Zbl 07273574 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 5, 16 p. (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{H. K. Nashine} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 5, 16 p. (2021; Zbl 07273574) Full Text: DOI
Shammakh, Wafa; Alzumi, Hadeel Z.; AlQahtani, Bushra A. On more general fractional differential equations involving mixed generalized derivatives with nonlocal multipoint and generalized fractional integral boundary conditions. (English) Zbl 07300030 J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{W. Shammakh} et al., J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020; Zbl 07300030) Full Text: DOI
Gomoyunov, M. I. To the theory of differential inclusions with Caputo fractional derivatives. (English. Russian original) Zbl 07284435 Differ. Equ. 56, No. 11, 1387-1401 (2020); translation from Differ. Uravn. 56, No. 11, 1427-1440 (2020). Reviewer: Aurelian Cernea (Bucharest) MSC: 34A08 34A60 34B15 PDF BibTeX XML Cite \textit{M. I. Gomoyunov}, Differ. Equ. 56, No. 11, 1387--1401 (2020; Zbl 07284435); translation from Differ. Uravn. 56, No. 11, 1427--1440 (2020) Full Text: DOI
Alsarori, Nawal A.; Ghadle, Kirtiwant P. Differential inclusions of fractional order with impulse effects in Banach spaces. (English) Zbl 1452.34068 Nonlinear Funct. Anal. Appl. 25, No. 1, 101-116 (2020). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 34A08 34B10 47N20 34A37 PDF BibTeX XML Cite \textit{N. A. Alsarori} and \textit{K. P. Ghadle}, Nonlinear Funct. Anal. Appl. 25, No. 1, 101--116 (2020; Zbl 1452.34068) Full Text: Link
Xiang, Mingqi; Zhang, Binlin; Hu, Die Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping. (English) Zbl 1442.35272 Electron Res. Arch. 28, No. 2, 651-669 (2020). MSC: 35L86 35L72 35L20 35R09 PDF BibTeX XML Cite \textit{M. Xiang} et al., Electron Res. Arch. 28, No. 2, 651--669 (2020; Zbl 1442.35272) Full Text: DOI
Li, Yajing; Wang, Yejuan The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. (English) Zbl 1443.34086 Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2665-2697 (2020). MSC: 34K37 34K09 34K50 47N20 60J65 34K25 34K30 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2665--2697 (2020; Zbl 1443.34086) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Darwish, Mohamed Abdalla Fractional differential inclusions of Hilfer type under weak topologies in Banach spaces. (English) Zbl 1442.34004 Asian-Eur. J. Math. 13, No. 1, Article ID 2050015, 16 p. (2020). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 34A08 34G20 26A33 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Asian-Eur. J. Math. 13, No. 1, Article ID 2050015, 16 p. (2020; Zbl 1442.34004) Full Text: DOI
Ilolov, Mamadsho Ilolovich; Gulzhonov, Dilovar Nusaĭrievich; Rakhmatov, Dzhamshed Shavkatovich Functional differential inclusions of Hale type with fractional order of derivative in a Banach space. (Russian. English summary) Zbl 07310012 Chebyshevskiĭ Sb. 20, No. 4(72), 208-225 (2019). Reviewer: Andrej V. Plotnikov (Odessa) MSC: 34K09 34K37 34K30 47N20 PDF BibTeX XML Cite \textit{M. I. Ilolov} et al., Chebyshevskiĭ Sb. 20, No. 4(72), 208--225 (2019; Zbl 07310012) Full Text: DOI MNR
Afanasova, M. S.; Petrosyan, G. G. On the boundary value problem for functional differential inclusion of fractional order with general initial condition in a Banach space. (English. Russian original) Zbl 1446.34096 Russ. Math. 63, No. 9, 1-11 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 9, 3-15 (2019). MSC: 34K37 34K30 34K10 34K09 47N20 PDF BibTeX XML Cite \textit{M. S. Afanasova} and \textit{G. G. Petrosyan}, Russ. Math. 63, No. 9, 1--11 (2019; Zbl 1446.34096); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 9, 3--15 (2019) Full Text: DOI
Kharat, V. V.; Dhaigude, D. B.; Hasabe, D. R. On nonlinear mixed fractional integrodifferential inclusion with four-point nonlocal Riemann-Liouville integral boundary conditions. (English) Zbl 1433.34103 Indian J. Pure Appl. Math. 50, No. 4, 937-951 (2019). MSC: 34K37 34B10 34K09 45J05 PDF BibTeX XML Cite \textit{V. V. Kharat} et al., Indian J. Pure Appl. Math. 50, No. 4, 937--951 (2019; Zbl 1433.34103) Full Text: DOI
Herzallah, Mohamed A. E.; Radwan, Ashraf H. A. Existence of mild solutions to semilinear fractional differential inclusion with deviated advanced nonlocal conditions. (English) Zbl 07169882 J. Egypt. Math. Soc. 27, Paper No. 45, 15 p. (2019). MSC: 34G20 45N05 34A08 PDF BibTeX XML Cite \textit{M. A. E. Herzallah} and \textit{A. H. A. Radwan}, J. Egypt. Math. Soc. 27, Paper No. 45, 15 p. (2019; Zbl 07169882) Full Text: DOI
Ahmad, Bashir; Ntouyas, Sotiris K.; Alsaedi, Ahmed Existence theory for nonlocal boundary value problems involving mixed fractional derivatives. (English) Zbl 1442.34005 Nonlinear Anal., Model. Control 24, No. 6, 937-957 (2019). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Nonlinear Anal., Model. Control 24, No. 6, 937--957 (2019; Zbl 1442.34005) Full Text: DOI
Ahmad, Bashir; Alghanmi, Madeaha; Ntouyas, Sotiris K.; Alsaedi, Ahmed A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions. (English) Zbl 1431.34002 AIMS Math. 4, No. 1, 26-42 (2019). MSC: 34A08 34A60 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., AIMS Math. 4, No. 1, 26--42 (2019; Zbl 1431.34002) Full Text: DOI
Castaing, Charles; Godet-Thobie, C.; Phung, Phan D.; Truong, Le X. On fractional differential inclusions with nonlocal boundary conditions. (English) Zbl 1428.34012 Fract. Calc. Appl. Anal. 22, No. 2, 444-478 (2019). MSC: 34A08 34A60 34B10 47N20 PDF BibTeX XML Cite \textit{C. Castaing} et al., Fract. Calc. Appl. Anal. 22, No. 2, 444--478 (2019; Zbl 1428.34012) Full Text: DOI
Kaptanoğlu, H. Turgay; Üreyen, A. Ersin Singular integral operators with Bergman-Besov kernels on the ball. (English) Zbl 07093661 Integral Equations Oper. Theory 91, No. 4, Paper No. 30, 30 p. (2019). MSC: 47B34 47G10 32A55 45P05 46E15 32A37 32A36 30H25 30H20 PDF BibTeX XML Cite \textit{H. T. Kaptanoğlu} and \textit{A. E. Üreyen}, Integral Equations Oper. Theory 91, No. 4, Paper No. 30, 30 p. (2019; Zbl 07093661) Full Text: DOI
Alsaedi, Ahmed; Alghanmi, Madeaha; Ahmad, Bashir; Ntouyas, Sotiris K. Generalized Liouville-Caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. (English) Zbl 1425.34005 Symmetry 10, No. 12, Paper No. 667, 20 p. (2018). MSC: 34A08 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Symmetry 10, No. 12, Paper No. 667, 20 p. (2018; Zbl 1425.34005) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Lazreg, Jamal-Eddine; N’guérékata, Gaston M. Hilfer and Hadamard functional random fractional differential inclusions. (English) Zbl 1446.34004 Cubo 19, No. 1, 17-38 (2017). MSC: 34A08 34F05 34D10 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Cubo 19, No. 1, 17--38 (2017; Zbl 1446.34004) Full Text: DOI
Graef, John R.; Guerraiche, Nassim; Hamani, Samira Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces. (English) Zbl 1449.34017 Stud. Univ. Babeş-Bolyai, Math. 62, No. 4, 427-438 (2017). MSC: 34A08 34B15 34G20 47N20 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Stud. Univ. Babeş-Bolyai, Math. 62, No. 4, 427--438 (2017; Zbl 1449.34017) Full Text: DOI
Cernea, Aurelian On a Sturm-Liouville type differential inclusion of fractional order. (English) Zbl 1424.34014 Fract. Differ. Calc. 7, No. 2, 385-393 (2017). MSC: 34A08 34A60 47N20 PDF BibTeX XML Cite \textit{A. Cernea}, Fract. Differ. Calc. 7, No. 2, 385--393 (2017; Zbl 1424.34014) Full Text: DOI
Jiang, Yi-Rong; Huang, Nan-Jing; Yao, Jen-Chih Solvability and optimal control of semilinear nonlocal fractional evolution inclusion with Clarke subdifferential. (English) Zbl 1380.34095 Appl. Anal. 96, No. 14, 2349-2366 (2017). MSC: 34G25 34A08 49J15 34B10 47N20 PDF BibTeX XML Cite \textit{Y.-R. Jiang} et al., Appl. Anal. 96, No. 14, 2349--2366 (2017; Zbl 1380.34095) Full Text: DOI
Abbas, Said; Benchohra, Mouffak; Darwish, Mohamed Abdalla Some existence and stability results for abstract fractional differential inclusions with not instantaneous impulses. (English) Zbl 1389.34054 Math. Rep., Buchar. 19(69), No. 2, 245-262 (2017). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 34A60 26A33 34A37 PDF BibTeX XML Cite \textit{S. Abbas} et al., Math. Rep., Buchar. 19(69), No. 2, 245--262 (2017; Zbl 1389.34054)
Siracusa, Giovana; Henríquez, Hernán R.; Cuevas, Claudio Existence results for fractional integro-differential inclusions with state-dependent delay. (English) Zbl 1377.34099 Nonauton. Dyn. Syst. 4, 62-77 (2017). MSC: 34K37 34K30 34K09 47N20 PDF BibTeX XML Cite \textit{G. Siracusa} et al., Nonauton. Dyn. Syst. 4, 62--77 (2017; Zbl 1377.34099) Full Text: DOI
Petrosyan, G. G.; Afanasova, M. S. On the Cauchy problem for a differential inclusion of fractional order with nonlinear boundary conditions. (Russian. English summary) Zbl 1379.34057 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 135-151 (2017). MSC: 34G25 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{G. G. Petrosyan} and \textit{M. S. Afanasova}, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 135--151 (2017; Zbl 1379.34057)
Abbas, Saïd; Benchohra, Mouffak; Petruşel, Adrian Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory. (English) Zbl 1364.34008 Fract. Calc. Appl. Anal. 20, No. 2, 384-398 (2017). MSC: 34A08 47H10 47H09 PDF BibTeX XML Cite \textit{S. Abbas} et al., Fract. Calc. Appl. Anal. 20, No. 2, 384--398 (2017; Zbl 1364.34008) Full Text: DOI
Kamenskii, Mikhail; Obukhovskii, Valeri; Petrosyan, Garik; Yao, Jen-Chih On semilinear fractional order differential inclusions in Banach spaces. (English) Zbl 1364.34088 Fixed Point Theory 18, No. 1, 269-292 (2017). Reviewer: Syed Abbas (Mandi) MSC: 34G25 34C29 34A08 47N20 PDF BibTeX XML Cite \textit{M. Kamenskii} et al., Fixed Point Theory 18, No. 1, 269--292 (2017; Zbl 1364.34088) Full Text: DOI Link
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K.; Tariboon, Jessada Hadamard-type fractional differential equations, inclusions and inequalities. (English) Zbl 1370.34002 Cham: Springer (ISBN 978-3-319-52140-4/hbk; 978-3-319-52141-1/ebook). xiii, 414 p. (2017). Reviewer: Christopher Goodrich (Omaha) MSC: 34-02 34A08 26A33 34A37 34A38 34A60 34B10 45G10 47H10 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Hadamard-type fractional differential equations, inclusions and inequalities. Cham: Springer (2017; Zbl 1370.34002) Full Text: DOI
Abbas, Saïd; Albarakati, Wafaa; Benchohra, Mouffak; Petruşel, Adrian Existence and Ulam stability results for Hadamard partial fractional integral inclusions via Picard operators. (English) Zbl 1399.26009 Stud. Univ. Babeş-Bolyai, Math. 61, No. 4, 409-420 (2016). MSC: 26A33 34G20 34A40 45N05 47H10 PDF BibTeX XML Cite \textit{S. Abbas} et al., Stud. Univ. Babeş-Bolyai, Math. 61, No. 4, 409--420 (2016; Zbl 1399.26009)
Castaing, C.; Godet-Thobie, C.; Truong, L. X.; Mostefai, F. Z. On a fractional differential inclusion in Banach space under weak compactness condition. (English) Zbl 1383.34004 Kusuoka, Shigeo (ed.) et al., Advances in mathematical economics. Vol. 20. Selected papers based on the presentations at the 6th conference on mathematical analysis in economic theory, Tokyo, Japan, January 26–29, 2015. Singapore: Springer (ISBN 978-981-10-0475-9/hbk; 978-981-10-0476-6/ebook). Advances in Mathematical Economics 20, 23-75 (2016). MSC: 34A08 34A60 34B15 47H10 34G25 26A39 49K21 PDF BibTeX XML Cite \textit{C. Castaing} et al., Adv. Math. Econ. 20, 23--75 (2016; Zbl 1383.34004) Full Text: DOI
Guerraiche, Nassim; Hamani, Samira; Henderson, Johnny Initial value problems for fractional functional differential inclusions with Hadamard type derivative. (English) Zbl 1389.34056 Arch. Math., Brno 52, No. 4, 263-273 (2016); addendum ibid. 53, No. 1, 63 (2017). MSC: 34A60 26A33 PDF BibTeX XML Cite \textit{N. Guerraiche} et al., Arch. Math., Brno 52, No. 4, 263--273 (2016; Zbl 1389.34056) Full Text: DOI
Cernea, Aurelian On some boundary value problems for a fractional integro-differential inclusion. (English) Zbl 1366.45006 Nonlinear Funct. Anal. Appl. 21, No. 2, 215-223 (2016). Reviewer: Vasundhara J. Devi (Visakhapatnam) MSC: 45J05 45G10 45D05 PDF BibTeX XML Cite \textit{A. Cernea}, Nonlinear Funct. Anal. Appl. 21, No. 2, 215--223 (2016; Zbl 1366.45006)
Jin, Nana; Sun, Shurong; Zhang, Chao; Han, Zhenlai The existence of solutions for boundary value problems of fractional differential inclusion with a parameter. (English) Zbl 1359.34010 J. Appl. Math. Comput. 52, No. 1-2, 387-402 (2016). Reviewer: Christopher Goodrich (Omaha) MSC: 34A08 34A60 34B15 47N20 PDF BibTeX XML Cite \textit{N. Jin} et al., J. Appl. Math. Comput. 52, No. 1--2, 387--402 (2016; Zbl 1359.34010) Full Text: DOI
Chadha, Alka; Pandey, Dwijendra N. Existence of the mild solution for impulsive neutral stochastic fractional integro-differential inclusions with nonlocal conditions. (English) Zbl 1375.45008 Mediterr. J. Math. 13, No. 3, 1005-1031 (2016). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 45J05 26A33 45G10 45N05 PDF BibTeX XML Cite \textit{A. Chadha} and \textit{D. N. Pandey}, Mediterr. J. Math. 13, No. 3, 1005--1031 (2016; Zbl 1375.45008) Full Text: DOI
Hamani, Samira; Henderson, Johnny Boundary value problems for fractional differential inclusions with nonlocal conditions. (English) Zbl 1354.34019 Mediterr. J. Math. 13, No. 3, 967-979 (2016). MSC: 34A08 34A60 34B10 47N20 PDF BibTeX XML Cite \textit{S. Hamani} and \textit{J. Henderson}, Mediterr. J. Math. 13, No. 3, 967--979 (2016; Zbl 1354.34019) Full Text: DOI
Feng, Yuqiang; Wang, Yuanyuan Fixed points of multi-valued monotone operators and the solvability of a fractional integral inclusion. (English) Zbl 06610387 Fixed Point Theory Appl. 2016, Paper No. 64, 14 p. (2016). MSC: 47 54 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{Y. Wang}, Fixed Point Theory Appl. 2016, Paper No. 64, 14 p. (2016; Zbl 06610387) Full Text: DOI
Loi, Nguyen Van; Ke, Tran Dinh; Obukhovskii, Valeri; Zecca, Pietro Topological methods for some classes of differential variational inequalities. (English) Zbl 1357.34044 J. Nonlinear Convex Anal. 17, No. 3, 403-419 (2016). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A60 34A40 34A08 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{N. Van Loi} et al., J. Nonlinear Convex Anal. 17, No. 3, 403--419 (2016; Zbl 1357.34044) Full Text: Link
Baleanu, Dumitru; Moghaddam, Mehdi; Mohammadi, Hakimeh; Rezapour, Shahram A fractional derivative inclusion problem via an integral boundary condition. (English) Zbl 1337.34010 J. Comput. Anal. Appl. 21, No. 3, 504-514 (2016). Reviewer: Neville Ford (Chester) MSC: 34A08 34A60 34B10 47N20 PDF BibTeX XML Cite \textit{D. Baleanu} et al., J. Comput. Anal. Appl. 21, No. 3, 504--514 (2016; Zbl 1337.34010)
Liu, Xianghu; Liu, Xiaoyou; Liu, Yanmin Solvability for fractional differential inclusions with fractional nonseparated boundary conditions. (English) Zbl 1341.34009 J. Comput. Anal. Appl. 20, No. 4, 734-749 (2016). Reviewer: Aurelian Cernea (Bucharest) MSC: 34A08 34A60 34B10 47N20 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Comput. Anal. Appl. 20, No. 4, 734--749 (2016; Zbl 1341.34009)
Chadha, Alka; Pandey, Dwijendra N. Mild solution for impulsive neutral fractional partial differential inclusions with nonlocal conditions. (English) Zbl 1339.34084 Collect. Math. 67, No. 1, 85-111 (2016). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K37 34K40 34K45 34K30 34K09 47N20 34A08 PDF BibTeX XML Cite \textit{A. Chadha} and \textit{D. N. Pandey}, Collect. Math. 67, No. 1, 85--111 (2016; Zbl 1339.34084) Full Text: DOI
Zhou, Yong Fractional evolution equations and inclusions. Analysis and control. (English) Zbl 1343.34001 Amsterdam: Elsevier/Academic Press (ISBN 978-0-12-804277-9/hbk). x, 283 p. (2016). Reviewer: Christopher Goodrich (Omaha) MSC: 34-02 26A33 34A08 34G20 34G25 34F05 34H05 PDF BibTeX XML Cite \textit{Y. Zhou}, Fractional evolution equations and inclusions. Analysis and control. Amsterdam: Elsevier/Academic Press (2016; Zbl 1343.34001) Full Text: Link
Chen, Lizhen; Fan, Zhenbin; Li, Gang Existence results for fractional differential inclusion via resolvent operators in Banach spaces. (Chinese. English summary) Zbl 1349.34006 Math. Pract. Theory 45, No. 5, 282-289 (2015). MSC: 34A08 34G25 34B10 47N20 PDF BibTeX XML Cite \textit{L. Chen} et al., Math. Pract. Theory 45, No. 5, 282--289 (2015; Zbl 1349.34006)
Agarwal, Ravi P.; Baleanu, Dumitru; Hedayati, Vahid; Rezapour, Shahram Two fractional derivative inclusion problems via integral boundary condition. (English) Zbl 1338.34048 Appl. Math. Comput. 257, 205-212 (2015). MSC: 34A60 34A08 34B10 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Appl. Math. Comput. 257, 205--212 (2015; Zbl 1338.34048) Full Text: DOI
Balasubramaniam, P.; Tamilalagan, P. Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function. (English) Zbl 1338.93070 Appl. Math. Comput. 256, 232-246 (2015). MSC: 93B05 45J05 45R05 34A08 34K35 34K37 34K50 PDF BibTeX XML Cite \textit{P. Balasubramaniam} and \textit{P. Tamilalagan}, Appl. Math. Comput. 256, 232--246 (2015; Zbl 1338.93070) Full Text: DOI
Ntouyas, Sotiris K.; Etemad, Sina; Tariboon, Jessada Existence of solutions for fractional differential inclusions with integral boundary conditions. (English) Zbl 1341.34021 Bound. Value Probl. 2015, Paper No. 92, 14 p. (2015). MSC: 34A60 34A08 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{S. K. Ntouyas} et al., Bound. Value Probl. 2015, Paper No. 92, 14 p. (2015; Zbl 1341.34021) Full Text: DOI
Kumam, Poom; Chaipunya, Parin Fixed point theorems for cyclic operators with application in fractional integral inclusions with delays. (English) Zbl 1338.54183 Discrete Contin. Dyn. Syst. 2015, Suppl., 248-257 (2015). MSC: 54H25 54C60 54E50 54F05 47J22 26A33 PDF BibTeX XML Cite \textit{P. Kumam} and \textit{P. Chaipunya}, Discrete Contin. Dyn. Syst. 2015, 248--257 (2015; Zbl 1338.54183) Full Text: DOI
Cernea, Aurelian Continuous selections of solution sets of fractional integro-differential inclusions. (English) Zbl 1349.45012 Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 2, 399-406 (2015). MSC: 45J05 45G10 26E25 26A33 PDF BibTeX XML Cite \textit{A. Cernea}, Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 2, 399--406 (2015; Zbl 1349.45012) Full Text: DOI
Hamani, Samira; Henderson, Johnny Boundary-value problems for Riemann-Liouville fractional differential inclusions in Banach spaces. (English) Zbl 1332.34008 Electron. J. Differ. Equ. 2015, Paper No. 233, 10 p. (2015). MSC: 34A08 34G25 47N20 PDF BibTeX XML Cite \textit{S. Hamani} and \textit{J. Henderson}, Electron. J. Differ. Equ. 2015, Paper No. 233, 10 p. (2015; Zbl 1332.34008) Full Text: EMIS
Abbas, Saïd; Benchohra, Mouffak Existence and Ulam stability for partial impulsive discontinuous fractional differential inclusions in Banach algebras. (English) Zbl 1331.35360 Mediterr. J. Math. 12, No. 4, 1245-1264 (2015). MSC: 35R11 35R12 35A01 35B35 35R70 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Mediterr. J. Math. 12, No. 4, 1245--1264 (2015; Zbl 1331.35360) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Slimani, Boualem Attou Existence and Ulam stabilities for partial fractional random differential inclusions with nonconvex right hand side. (English) Zbl 1328.35270 Panam. Math. J. 25, No. 1, 95-110 (2015). MSC: 35R11 35R70 26A33 35A01 35B35 PDF BibTeX XML Cite \textit{S. Abbas} et al., Panam. Math. J. 25, No. 1, 95--110 (2015; Zbl 1328.35270)
Abbas, Saïd; Albarakati, Wafaa A.; Benchohra, Mouffak; Darwish, Mohamed Abdalla; Hilal, Eman M. New existence and stability results for partial fractional differential inclusions with multiple delay. (English) Zbl 1325.35254 Ann. Pol. Math. 114, No. 1, 81-100 (2015). MSC: 35R11 35R70 26A33 35A01 35B35 PDF BibTeX XML Cite \textit{S. Abbas} et al., Ann. Pol. Math. 114, No. 1, 81--100 (2015; Zbl 1325.35254) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Darwish, Mohamed Abdalla New stability results for partial fractional differential inclusions with not instantaneous impulses. (English) Zbl 1328.35269 Fract. Calc. Appl. Anal. 18, No. 1, 172-191 (2015). MSC: 35R11 35B35 PDF BibTeX XML Cite \textit{S. Abbas} et al., Fract. Calc. Appl. Anal. 18, No. 1, 172--191 (2015; Zbl 1328.35269) Full Text: DOI
Ntouyas, Sotiris K.; Tariboon, Jessada Applications of quantum calculus on finite intervals to impulsive difference inclusions. (English) Zbl 1417.39024 Adv. Difference Equ. 2014, Paper No. 262, 16 p. (2014). MSC: 39A13 34A60 26A33 34A37 PDF BibTeX XML Cite \textit{S. K. Ntouyas} and \textit{J. Tariboon}, Adv. Difference Equ. 2014, Paper No. 262, 16 p. (2014; Zbl 1417.39024) Full Text: DOI
Wang, Huiwen; Li, Fang Mild solutions for neutral fractional differential inclusions with finite delay in Banach spaces. (English) Zbl 1358.34089 Int. J. Evol. Equ. 9, No. 4, 357-372 (2014). MSC: 34K37 34K09 34K30 34K40 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{F. Li}, Int. J. Evol. Equ. 9, No. 4, 357--372 (2014; Zbl 1358.34089)
Zhou, Wenxue; Liu, Haizhong Existence of weak solutions for nonlinear fractional differential inclusions with non-separated boundary conditions. (English) Zbl 1324.34019 Chin. J. Eng. Math. 31, No. 5, 779-790 (2014). MSC: 34A08 34A60 34B15 47N20 PDF BibTeX XML Cite \textit{W. Zhou} and \textit{H. Liu}, Chin. J. Eng. Math. 31, No. 5, 779--790 (2014; Zbl 1324.34019) Full Text: DOI
Abbas, S.; Benchohra, M.; Petrusel, A. Ulam stability for partial fractional differential inclusions via Picard operators theory. (English) Zbl 1324.34029 Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 51, 13 p. (2014). MSC: 34A60 47N20 34G20 26A33 PDF BibTeX XML Cite \textit{S. Abbas} et al., Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 51, 13 p. (2014; Zbl 1324.34029) Full Text: DOI Link
Ahmad, Bashir; Ntouyas, Sotiris Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. (English) Zbl 1340.34056 Math. Bohem. 139, No. 3, 451-465 (2014). Reviewer: Sergei Kornev (Voronezh) MSC: 34A60 34A08 34B10 PDF BibTeX XML Cite \textit{B. Ahmad} and \textit{S. Ntouyas}, Math. Bohem. 139, No. 3, 451--465 (2014; Zbl 1340.34056) Full Text: Link
Abbas, Saïd; Benchohra, Mouffak Ulam stabilities for the Darboux problem for partial fractional differential inclusions. (English) Zbl 1307.26006 Demonstr. Math. 47, No. 4, 826-838 (2014). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 26A33 45N05 47H10 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Demonstr. Math. 47, No. 4, 826--838 (2014; Zbl 1307.26006) Full Text: DOI
Benchohra, Mouffak; Berhoun, Farida; Hamidi, Naima; Nieto, Juan J. Fractional differential inclusions with anti-periodic boundary conditions. (English) Zbl 1305.26015 Nonlinear Anal. Forum 19, 27-35 (2014). MSC: 26A33 26A42 34A60 34B15 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Nonlinear Anal. Forum 19, 27--35 (2014; Zbl 1305.26015)
Abbas, Said; Benchohra, Mouffak; Hammoudi, Ahmed Upper, lower solutions method and extremal solutions for impulsive discontinuous partial fractional differential inclusions. (English) Zbl 1296.26025 Panam. Math. J. 24, No. 1, 31-52 (2014). MSC: 26A33 34A60 PDF BibTeX XML Cite \textit{S. Abbas} et al., Panam. Math. J. 24, No. 1, 31--52 (2014; Zbl 1296.26025)
Cernea, A. On a fractional differential inclusion with four-point integral boundary conditions. (English) Zbl 1399.34056 Surv. Math. Appl. 8, 115-124 (2013). MSC: 34B10 34B15 34A08 PDF BibTeX XML Cite \textit{A. Cernea}, Surv. Math. Appl. 8, 115--124 (2013; Zbl 1399.34056) Full Text: EMIS
Cernea, Aurelian On a fractional differential inclusion with nonlocal Riemann-Liouville type integral boundary conditions. (English) Zbl 1329.34004 Lib. Math. (N.S.) 33, No. 2, 37-46 (2013). MSC: 34A08 34A60 34B10 34B15 PDF BibTeX XML Cite \textit{A. Cernea}, Lib. Math. (N.S.) 33, No. 2, 37--46 (2013; Zbl 1329.34004) Full Text: DOI
Cernea, Aurelian On a higher-order fractional differential inclusion with multi-strip fractional integral boundary conditions. (English) Zbl 1313.34053 ROMAI J. 9, No. 2, 51-60 (2013). MSC: 34A60 34A08 34B15 PDF BibTeX XML Cite \textit{A. Cernea}, ROMAI J. 9, No. 2, 51--60 (2013; Zbl 1313.34053)
Liu, Xiaoyou; Liu, Zhenhai Existence results for fractional semilinear differential inclusions in Banach spaces. (English) Zbl 1300.34020 J. Appl. Math. Comput. 42, No. 1-2, 171-182 (2013). MSC: 34A08 34G25 47N20 PDF BibTeX XML Cite \textit{X. Liu} and \textit{Z. Liu}, J. Appl. Math. Comput. 42, No. 1--2, 171--182 (2013; Zbl 1300.34020) Full Text: DOI
Zhu, Yan; Wang, Lianglong The existence of solutions for impulsive fractional differential inclusions. (English) Zbl 1299.34027 Math. Appl. 26, No. 4, 828-838 (2013). MSC: 34A08 34A12 34A37 34A60 47N20 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{L. Wang}, Math. Appl. 26, No. 4, 828--838 (2013; Zbl 1299.34027)
Benchohra, Mouffak; Mostefai, Fatima-Zohra Weak solutions of fractional order Pettis integral inclusions with multiple time delay in Banach spaces. (English) Zbl 1294.26005 Cubo 15, No. 1, 1-12 (2013). MSC: 26A33 35H10 35D30 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{F.-Z. Mostefai}, Cubo 15, No. 1, 1--12 (2013; Zbl 1294.26005) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak Fractional order Riemann-Liouville integral inclusions with two independent variables and multiple delay. (English) Zbl 1281.26001 Opusc. Math. 33, No. 2, 209-222 (2013). MSC: 26A33 47H10 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Opusc. Math. 33, No. 2, 209--222 (2013; Zbl 1281.26001) Full Text: DOI
Abbas, S.; Benchohra, M. On the set of solutions for the Darboux problem for fractional order partial hyperbolic functional differential inclusions. (English) Zbl 1280.26008 Fixed Point Theory 14, No. 2, 253-262 (2013). MSC: 26A33 34A60 47H10 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Fixed Point Theory 14, No. 2, 253--262 (2013; Zbl 1280.26008) Full Text: Link
Abbas, Saïd; Benchohra, Mouffak On the set of solutions of fractional order Riemann-Liouville integral inclusions. (English) Zbl 1296.26022 Demonstr. Math. 46, No. 2, 271-281 (2013). MSC: 26A33 45B05 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Demonstr. Math. 46, No. 2, 271--281 (2013; Zbl 1296.26022) Full Text: DOI
Liu, Yansheng; Yu, Huimin Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions. (English) Zbl 1285.34010 Abstr. Appl. Anal. 2013, Article ID 942831, 8 p. (2013). Reviewer: Sergei Kornev (Voronezh) MSC: 34A60 34A08 34B18 34C23 47N20 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{H. Yu}, Abstr. Appl. Anal. 2013, Article ID 942831, 8 p. (2013; Zbl 1285.34010) Full Text: DOI
Cernea, Aurelian On an integro-differential inclusion of fractional order. (English) Zbl 1279.45009 Differ. Equ. Dyn. Syst. 21, No. 3, 225-236 (2013). Reviewer: Iulian Stoleriu (Iaşi) MSC: 45J05 26A33 45G10 PDF BibTeX XML Cite \textit{A. Cernea}, Differ. Equ. Dyn. Syst. 21, No. 3, 225--236 (2013; Zbl 1279.45009) Full Text: DOI
Agarwal, Ravi P.; Ahmad, Bashir; Alsaedi, Ahmed; Shahzad, Naseer Dimension of the solution set for fractional differential inclusions. (English) Zbl 1278.34003 J. Nonlinear Convex Anal. 14, No. 2, 319-329 (2013). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 47N20 34A60 34B10 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., J. Nonlinear Convex Anal. 14, No. 2, 319--329 (2013; Zbl 1278.34003) Full Text: Link
Cernea, Aurelian On a multi point boundary value problem for a fractional order differential inclusion. (English) Zbl 1262.34006 Arab J. Math. Sci. 19, No. 1, 73-83 (2013). MSC: 34A08 34A60 34B18 34B10 47N20 PDF BibTeX XML Cite \textit{A. Cernea}, Arab J. Math. Sci. 19, No. 1, 73--83 (2013; Zbl 1262.34006) Full Text: DOI
Cernea, Aurelian On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. (English) Zbl 1302.34004 J. Appl. Math. Comput. 38, No. 1-2, 133-143 (2012). MSC: 34A08 34A60 34B15 47N20 PDF BibTeX XML Cite \textit{A. Cernea}, J. Appl. Math. Comput. 38, No. 1--2, 133--143 (2012; Zbl 1302.34004) Full Text: DOI
Nyamoradi, Nemat; Javidi, Mohamad Existence of multiple positive solutions for fractional differential inclusions with \(m\)-point boundary conditions and two fractional orders. (English) Zbl 1328.47084 Electron. J. Differ. Equ. 2012, Paper No. 187, 26 p. (2012). Reviewer: Zhaocai Hao (Shandong) MSC: 47N20 47H10 34A08 34A60 34B10 PDF BibTeX XML Cite \textit{N. Nyamoradi} and \textit{M. Javidi}, Electron. J. Differ. Equ. 2012, Paper No. 187, 26 p. (2012; Zbl 1328.47084) Full Text: EMIS
Benchohra, Mouffak; Henderson, Johnny; Mostefai, Fatima-Zohra Weak solutions for hyperbolic partial fractional differential inclusions in Banach spaces. (English) Zbl 1268.35122 Comput. Math. Appl. 64, No. 10, 3101-3107 (2012). MSC: 35R11 35D30 35R70 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Comput. Math. Appl. 64, No. 10, 3101--3107 (2012; Zbl 1268.35122) Full Text: DOI
Darus, Maslina; Ibrahim, Rabha W. On the existence of univalent solutions for fractional integral equation of Volterra type in complex plane. (English) Zbl 1313.45002 ROMAI J. 7, No. 1, 77-86 (2011). MSC: 45D05 26A33 30C45 PDF BibTeX XML Cite \textit{M. Darus} and \textit{R. W. Ibrahim}, ROMAI J. 7, No. 1, 77--86 (2011; Zbl 1313.45002)
Yan, Zuomao On a nonlocal problem for fractional integrodifferential inclusions in Banach spaces. (English) Zbl 1223.34007 Ann. Pol. Math. 101, No. 1, 87-103 (2011). Reviewer: Juan J. Trujillo (La Laguna) MSC: 34A08 34B10 47N20 34G25 PDF BibTeX XML Cite \textit{Z. Yan}, Ann. Pol. Math. 101, No. 1, 87--103 (2011; Zbl 1223.34007) Full Text: DOI
Ibrahim, Rabha W. On the existence for diffeo-integral inclusion of Sobolev-type of fractional order with applications. (English) Zbl 1333.34105 ANZIAM J. 52E(2010-2011), E1-E21 (2010). MSC: 34K09 34K37 PDF BibTeX XML Cite \textit{R. W. Ibrahim}, ANZIAM J. 52E, E1--E21 (2010; Zbl 1333.34105) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Zhou, Yong Fractional order hyperbolic differential inclusions with infinite delay. (English) Zbl 1218.26001 Proc. A. Razmadze Math. Inst. 154, 1-19 (2010). MSC: 26A33 34A60 PDF BibTeX XML Cite \textit{S. Abbas} et al., Proc. A. Razmadze Math. Inst. 154, 1--19 (2010; Zbl 1218.26001)
Ibrahim, Rabha W.; Jalab, Hamid A. Existence of the solution of fractional integral inclusion with time delay. (English) Zbl 1224.45010 Miskolc Math. Notes 11, No. 2, 139-150 (2010). MSC: 45G99 26A33 PDF BibTeX XML Cite \textit{R. W. Ibrahim} and \textit{H. A. Jalab}, Miskolc Math. Notes 11, No. 2, 139--150 (2010; Zbl 1224.45010)
Cernea, A. On a nonlinear fractional order differential inclusion. (English) Zbl 1211.34011 Electron. J. Qual. Theory Differ. Equ. 2010, Paper No. 78, 13 p. (2010). MSC: 34A60 34B18 34B15 34A08 47N20 PDF BibTeX XML Cite \textit{A. Cernea}, Electron. J. Qual. Theory Differ. Equ. 2010, Paper No. 78, 13 p. (2010; Zbl 1211.34011) Full Text: DOI EMIS EuDML
Abbas, Saïd; Benchohra, Mouffak The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses. (English) Zbl 1203.26005 Discuss. Math., Differ. Incl. Control Optim. 30, No. 1, 141-161 (2010). MSC: 26A33 34A60 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Discuss. Math., Differ. Incl. Control Optim. 30, No. 1, 141--161 (2010; Zbl 1203.26005) Full Text: DOI
Benchohra, Mouffak; Hamani, Samira; Nieto, Juan Jose; Slimani, Boualem Attou Existence of solutions to differential inclusions with fractional order and impulses. (English) Zbl 1194.26008 Electron. J. Differ. Equ. 2010, Paper No. 80, 18 p. (2010). MSC: 26A33 34A37 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Electron. J. Differ. Equ. 2010, Paper No. 80, 18 p. (2010; Zbl 1194.26008) Full Text: EMIS EuDML
Hamani, Samira; Benchohra, Mouffak; Graef, John R. Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. (English) Zbl 1185.26010 Electron. J. Differ. Equ. 2010, Paper No. 20, 16 p. (2010). MSC: 26A33 34A60 34B15 PDF BibTeX XML Cite \textit{S. Hamani} et al., Electron. J. Differ. Equ. 2010, Paper No. 20, 16 p. (2010; Zbl 1185.26010) Full Text: EMIS EuDML
Al-Issa, Shorouk; El-Sayed, Ahmed Mohamed Ahmed Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders. (English) Zbl 1228.26010 Commentat. Math. 49, No. 2, 171-177 (2009). MSC: 26A33 34A12 45G05 PDF BibTeX XML Cite \textit{S. Al-Issa} and \textit{A. M. A. El-Sayed}, Commentat. Math. 49, No. 2, 171--177 (2009; Zbl 1228.26010)
Ibrahim, Rabha W. Continuous solutions for fractional integral inclusion in locally convex topological space. (English) Zbl 1199.45032 Appl. Math., Ser. B (Engl. Ed.) 24, No. 2, 175-183 (2009). MSC: 45N05 26A33 42B05 PDF BibTeX XML Cite \textit{R. W. Ibrahim}, Appl. Math., Ser. B (Engl. Ed.) 24, No. 2, 175--183 (2009; Zbl 1199.45032) Full Text: DOI
Ibrahim, R. W. Existence of solutions for fractional multi-order integral inclusions. (English) Zbl 1175.45001 Int. Math. Forum 4, No. 1-4, 73-78 (2009). Reviewer: Li Xing (Yinchuan) MSC: 45A05 26A33 42B05 PDF BibTeX XML Cite \textit{R. W. Ibrahim}, Int. Math. Forum 4, No. 1--4, 73--78 (2009; Zbl 1175.45001) Full Text: Link
Benchohra, Mouffak; Hamani, Samira Boundary value problems for differential inclusions with fractional order. (English) Zbl 1181.26012 Discuss. Math., Differ. Incl. Control Optim. 28, 147-164 (2008). MSC: 26A33 34A60 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{S. Hamani}, Discuss. Math., Differ. Incl. Control Optim. 28, 147--164 (2008; Zbl 1181.26012) Full Text: DOI
Benchohra, Mouffak; Hamani, Samira Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. (English) Zbl 1180.26002 Topol. Methods Nonlinear Anal. 32, No. 1, 115-130 (2008). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26A33 34A60 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{S. Hamani}, Topol. Methods Nonlinear Anal. 32, No. 1, 115--130 (2008; Zbl 1180.26002)
Liu, Ming-Sheng; Zhu, Yu-Can; Srivastava, H. M. Properties and characteristics of certain subclasses of starlike functions of order \(\beta \). (English) Zbl 1145.30306 Math. Comput. Modelling 48, No. 3-4, 402-419 (2008). MSC: 30C45 26A33 PDF BibTeX XML Cite \textit{M.-S. Liu} et al., Math. Comput. Modelling 48, No. 3--4, 402--419 (2008; Zbl 1145.30306) Full Text: DOI
Agarwal, Ravi P.; Benchohra, Mouffak; Hamani, Samira Boundary value problems for differential inclusions with fractional order. (English) Zbl 1152.26005 Adv. Stud. Contemp. Math., Kyungshang 16, No. 2, 181-196 (2008). Reviewer: George A. Anastassiou (Memphis) MSC: 26A33 34A60 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Adv. Stud. Contemp. Math., Kyungshang 16, No. 2, 181--196 (2008; Zbl 1152.26005)
Guo, Dong; Liu, Ming-Sheng On certain subclass of Bazilevič functions. (English) Zbl 1134.30007 JIPAM, J. Inequal. Pure Appl. Math. 8, No. 1, Paper No. 12, 11 p. (2007). Reviewer: Daniel Breaz (Alba Iulia) MSC: 30C45 26A33 33C45 PDF BibTeX XML Cite \textit{D. Guo} and \textit{M.-S. Liu}, JIPAM, J. Inequal. Pure Appl. Math. 8, No. 1, Paper No. 12, 11 p. (2007; Zbl 1134.30007) Full Text: EMIS EuDML
Vityuk, A. N. Existence of solutions for differential inclusions with partial derivatives of fractional order. (English. Russian original) Zbl 0905.35102 Russ. Math. 41, No. 8, 10-16 (1997); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1997, No. 8(423), 13-19 (1997). Reviewer: C.Corduneanu (Arlington) MSC: 35R70 26A33 PDF BibTeX XML Cite \textit{A. N. Vityuk}, Russ. Math. 41, No. 8, 10--16 (1997; Zbl 0905.35102); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1997, No. 8(423), 13--19 (1997)
Kim, Yong Chan; Park, Young Soo; Srivastava, H. M. A class of inclusion theorems associated with some fractional integral operators. (English) Zbl 0741.30013 Proc. Japan Acad., Ser. A 67, No. 9, 313-318 (1991). Reviewer: H.M.Srivastava (Victoria) MSC: 30C45 26A33 33C20 30H05 PDF BibTeX XML Cite \textit{Y. C. Kim} et al., Proc. Japan Acad., Ser. A 67, No. 9, 313--318 (1991; Zbl 0741.30013) Full Text: DOI