Saffarian, Marziyeh; Mohebbi, Akbar Reduced proper orthogonal decomposition spectral element method for the solution of 2D multi-term time fractional mixed diffusion and diffusion-wave equations in linear and nonlinear modes. (English) Zbl 07546682 Comput. Math. Appl. 117, 127-154 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. Saffarian} and \textit{A. Mohebbi}, Comput. Math. Appl. 117, 127--154 (2022; Zbl 07546682) Full Text: DOI OpenURL
Pskhu, A. V. Green function of the first boundary-value problem for the fractional diffusion-wave equation in a multidimensional rectangular domain. (English. Russian original) Zbl 07542514 J. Math. Sci., New York 260, No. 3, 325-334 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 52-61 (2019). MSC: 35R11 35K20 35L20 PDF BibTeX XML Cite \textit{A. V. Pskhu}, J. Math. Sci., New York 260, No. 3, 325--334 (2022; Zbl 07542514); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 52--61 (2019) Full Text: DOI OpenURL
Plekhanova, M. V. Strong solution and optimal control problems for a class of fractional linear equations. (English. Russian original) Zbl 07542513 J. Math. Sci., New York 260, No. 3, 315-324 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 42-51 (2019). MSC: 49J20 35R11 34G10 PDF BibTeX XML Cite \textit{M. V. Plekhanova}, J. Math. Sci., New York 260, No. 3, 315--324 (2022; Zbl 07542513); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 42--51 (2019) Full Text: DOI OpenURL
Bhardwaj, Akanksha; Kumar, Alpesh; Tiwari, Awanish Kumar An RBF based finite difference method for the numerical approximation of multi-term nonlinear time fractional two dimensional diffusion-wave equation. (English) Zbl 07541694 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 84, 25 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{A. Bhardwaj} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 84, 25 p. (2022; Zbl 07541694) Full Text: DOI OpenURL
Zhang, Yun; Wei, Ting; Yan, Xiongbin Recovery of advection coefficient and fractional order in a time-fractional reaction-advection-diffusion-wave equation. (English) Zbl 07531709 J. Comput. Appl. Math. 411, Article ID 114254, 20 p. (2022). MSC: 35R30 35K20 35K57 35L20 35R11 65M32 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Comput. Appl. Math. 411, Article ID 114254, 20 p. (2022; Zbl 07531709) Full Text: DOI OpenURL
Sadri, Khadijeh; Aminikhah, Hossein A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation. (English) Zbl 07513120 Int. J. Comput. Math. 99, No. 5, 966-992 (2022). MSC: 34A08 65M70 PDF BibTeX XML Cite \textit{K. Sadri} and \textit{H. Aminikhah}, Int. J. Comput. Math. 99, No. 5, 966--992 (2022; Zbl 07513120) Full Text: DOI OpenURL
Wei, Ting; Luo, Yuhua A generalized quasi-boundary value method for recovering a source in a fractional diffusion-wave equation. (English) Zbl 07489711 Inverse Probl. 38, No. 4, Article ID 045001, 38 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{T. Wei} and \textit{Y. Luo}, Inverse Probl. 38, No. 4, Article ID 045001, 38 p. (2022; Zbl 07489711) Full Text: DOI OpenURL
Zhou, Hua-Cheng; Wu, Ze-Hao; Guo, Bao-Zhu; Chen, Yangquan Boundary stabilization and disturbance rejection for an unstable time fractional diffusion-wave equation. (English) Zbl 1482.35263 ESAIM, Control Optim. Calc. Var. 28, Paper No. 7, 30 p. (2022). MSC: 35R11 35K20 35L20 37L15 93B52 93D15 93B51 PDF BibTeX XML Cite \textit{H.-C. Zhou} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 7, 30 p. (2022; Zbl 1482.35263) Full Text: DOI OpenURL
Wei, Ting; Xian, Jun Determining a time-dependent coefficient in a time-fractional diffusion-wave equation with the Caputo derivative by an additional integral condition. (English) Zbl 1479.35957 J. Comput. Appl. Math. 404, Article ID 113910, 22 p. (2022). MSC: 35R30 35L20 35R11 65M32 PDF BibTeX XML Cite \textit{T. Wei} and \textit{J. Xian}, J. Comput. Appl. Math. 404, Article ID 113910, 22 p. (2022; Zbl 1479.35957) Full Text: DOI OpenURL
Khushtova, F. G. Third boundary value problem in a half-strip for the fractional diffusion equation. (English. Russian original) Zbl 1485.35394 Differ. Equ. 57, No. 12, 1610-1618 (2021); translation from Differ. Uravn. 57, No. 12, 1635-1643 (2021). MSC: 35R11 35A01 35A02 35C15 PDF BibTeX XML Cite \textit{F. G. Khushtova}, Differ. Equ. 57, No. 12, 1610--1618 (2021; Zbl 1485.35394); translation from Differ. Uravn. 57, No. 12, 1635--1643 (2021) Full Text: DOI OpenURL
Yang, Fan; Sun, Qiao-Xi; Li, Xiao-Xiao Three Landweber iterative methods for solving the initial value problem of time-fractional diffusion-wave equation on spherically symmetric domain. (English) Zbl 07480134 Inverse Probl. Sci. Eng. 29, No. 12, 2306-2356 (2021). MSC: 35R25 47A52 35R30 PDF BibTeX XML Cite \textit{F. Yang} et al., Inverse Probl. Sci. Eng. 29, No. 12, 2306--2356 (2021; Zbl 07480134) Full Text: DOI OpenURL
Liu, Haiyu; Lü, Shujuan; Jiang, Tao Analysis of Legendre pseudospectral approximations for nonlinear time fractional diffusion-wave equations. (English) Zbl 07479092 Int. J. Comput. Math. 98, No. 9, 1769-1791 (2021). MSC: 65-XX 35R11 65M70 65M06 65M12 PDF BibTeX XML Cite \textit{H. Liu} et al., Int. J. Comput. Math. 98, No. 9, 1769--1791 (2021; Zbl 07479092) Full Text: DOI OpenURL
Loreti, Paola; Sforza, Daniela Fractional diffusion-wave equations: hidden regularity for weak solutions. (English) Zbl 07414211 Fract. Calc. Appl. Anal. 24, No. 4, 1015-1034 (2021). MSC: 35R11 26A33 35L05 PDF BibTeX XML Cite \textit{P. Loreti} and \textit{D. Sforza}, Fract. Calc. Appl. Anal. 24, No. 4, 1015--1034 (2021; Zbl 07414211) Full Text: DOI arXiv OpenURL
Li, Xiaolin; Li, Shuling A fast element-free Galerkin method for the fractional diffusion-wave equation. (English) Zbl 07413900 Appl. Math. Lett. 122, Article ID 107529, 7 p. (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{X. Li} and \textit{S. Li}, Appl. Math. Lett. 122, Article ID 107529, 7 p. (2021; Zbl 07413900) Full Text: DOI OpenURL
Qi, Bin; Cheng, Hao Identification of source term for fractional diffusion-wave equation with Neumann boundary conditions. (Chinese. English summary) Zbl 07404161 J. Shandong Univ., Nat. Sci. 56, No. 6, 64-73 (2021). MSC: 65M30 65M32 65M15 65J20 26A33 35R11 PDF BibTeX XML Cite \textit{B. Qi} and \textit{H. Cheng}, J. Shandong Univ., Nat. Sci. 56, No. 6, 64--73 (2021; Zbl 07404161) Full Text: DOI OpenURL
Jiang, Su-Zhen; Wu, Yu-Jiang Recovering space-dependent source for a time-space fractional diffusion wave equation by fractional Landweber method. (English) Zbl 1473.65167 Inverse Probl. Sci. Eng. 29, No. 7, 990-1011 (2021). MSC: 65M32 65M12 65M22 35R11 PDF BibTeX XML Cite \textit{S.-Z. Jiang} and \textit{Y.-J. Wu}, Inverse Probl. Sci. Eng. 29, No. 7, 990--1011 (2021; Zbl 1473.65167) Full Text: DOI OpenURL
Wu, Lifei; Pan, Yueyue; Yang, Xiaozhong An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation. (English) Zbl 1476.65195 Comput. Appl. Math. 40, No. 2, Paper No. 67, 20 p. (2021). MSC: 65M06 65M12 65Y05 PDF BibTeX XML Cite \textit{L. Wu} et al., Comput. Appl. Math. 40, No. 2, Paper No. 67, 20 p. (2021; Zbl 1476.65195) Full Text: DOI OpenURL
Wu, Li-Fei; Yang, Xiao-Zhong; Li, Min A difference scheme with intrinsic parallelism for fractional diffusion-wave equation with damping. (English) Zbl 1482.65155 Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 602-616 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 65M15 65Y05 26A33 35R11 PDF BibTeX XML Cite \textit{L.-F. Wu} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 602--616 (2021; Zbl 1482.65155) Full Text: DOI OpenURL
Pimenov, Vladimir Germanovich; Tashirova, Ekaterina Evgen’evna Numerical method for fractional diffusion-wave equations with functional delay. (Russian. English summary) Zbl 1473.65119 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 156-169 (2021). MSC: 65M06 65M12 65M15 65Q20 PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{E. E. Tashirova}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 156--169 (2021; Zbl 1473.65119) Full Text: DOI MNR OpenURL
Yamamoto, M. Uniqueness in determining fractional orders of derivatives and initial values. (English) Zbl 1478.35227 Inverse Probl. 37, No. 9, Article ID 095006, 34 p. (2021). Reviewer: Nelson Vieira (Aveiro) MSC: 35R11 26A33 35R30 34A55 35K57 35K20 35A02 PDF BibTeX XML Cite \textit{M. Yamamoto}, Inverse Probl. 37, No. 9, Article ID 095006, 34 p. (2021; Zbl 1478.35227) Full Text: DOI OpenURL
Mohammadi-Firouzjaei, Hadi; Adibi, Hojatollah; Dehghan, Mehdi Local discontinuous Galerkin method for distributed-order time-fractional diffusion-wave equation: application of Laplace transform. (English) Zbl 1473.65210 Math. Methods Appl. Sci. 44, No. 6, 4923-4937 (2021). MSC: 65M60 65R10 35R11 PDF BibTeX XML Cite \textit{H. Mohammadi-Firouzjaei} et al., Math. Methods Appl. Sci. 44, No. 6, 4923--4937 (2021; Zbl 1473.65210) Full Text: DOI OpenURL
Heydari, M. H.; Avazzadeh, Z. Orthonormal Bernstein polynomials for solving nonlinear variable-order time fractional fourth-order diffusion-wave equation with nonsingular fractional derivative. (English) Zbl 07376723 Math. Methods Appl. Sci. 44, No. 4, 3098-3110 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{M. H. Heydari} and \textit{Z. Avazzadeh}, Math. Methods Appl. Sci. 44, No. 4, 3098--3110 (2021; Zbl 07376723) Full Text: DOI OpenURL
Saffarian, Marziyeh; Mohebbi, Akbar The Galerkin spectral element method for the solution of two-dimensional multiterm time fractional diffusion-wave equation. (English) Zbl 1473.65242 Math. Methods Appl. Sci. 44, No. 4, 2842-2858 (2021). MSC: 65M70 35R11 65M06 65M12 65M60 PDF BibTeX XML Cite \textit{M. Saffarian} and \textit{A. Mohebbi}, Math. Methods Appl. Sci. 44, No. 4, 2842--2858 (2021; Zbl 1473.65242) Full Text: DOI OpenURL
Nong, Lijuan; Chen, An; Cao, Jianxiong Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data. (English) Zbl 1473.65211 Math. Model. Nat. Phenom. 16, Paper No. 12, 18 p. (2021). MSC: 65M60 65N30 65N15 PDF BibTeX XML Cite \textit{L. Nong} et al., Math. Model. Nat. Phenom. 16, Paper No. 12, 18 p. (2021; Zbl 1473.65211) Full Text: DOI OpenURL
Zhang, Xindong; Yao, Lin Numerical approximation of time-dependent fractional convection-diffusion-wave equation by RBF-FD method. (English) Zbl 07371646 Eng. Anal. Bound. Elem. 130, 1-9 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{X. Zhang} and \textit{L. Yao}, Eng. Anal. Bound. Elem. 130, 1--9 (2021; Zbl 07371646) Full Text: DOI OpenURL
Yin, Baoli; Liu, Yang; Li, Hong; Zeng, Fanhai A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations. (English) Zbl 1475.65136 Appl. Numer. Math. 165, 56-82 (2021). MSC: 65M60 65M06 65N30 65D30 65M15 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{B. Yin} et al., Appl. Numer. Math. 165, 56--82 (2021; Zbl 1475.65136) Full Text: DOI OpenURL
Jian, Huan-Yan; Huang, Ting-Zhu; Gu, Xian-Ming; Zhao, Xi-Le; Zhao, Yong-Liang Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations. (English) Zbl 07351738 Comput. Math. Appl. 94, 136-154 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{H.-Y. Jian} et al., Comput. Math. Appl. 94, 136--154 (2021; Zbl 07351738) Full Text: DOI arXiv OpenURL
Derakhshan, Mohammadhossein; Aminataei, Azim An iterative method for solving fractional diffusion-wave equation involving the Caputo-Weyl fractional derivative. (English) Zbl 07332758 Numer. Linear Algebra Appl. 28, No. 2, e2345, 17 p. (2021). MSC: 65Mxx 35R11 PDF BibTeX XML Cite \textit{M. Derakhshan} and \textit{A. Aminataei}, Numer. Linear Algebra Appl. 28, No. 2, e2345, 17 p. (2021; Zbl 07332758) Full Text: DOI OpenURL
Ali, Umair; Khan, Muhammad Asim; Khater, Mostafa M. A.; Mousa, A. A.; Attia, Raghda A. M. A new numerical approach for solving 1D fractional diffusion-wave equation. (English) Zbl 1466.65056 J. Funct. Spaces 2021, Article ID 6638597, 7 p. (2021). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{U. Ali} et al., J. Funct. Spaces 2021, Article ID 6638597, 7 p. (2021; Zbl 1466.65056) Full Text: DOI OpenURL
Kachhia, Krunal B.; Prajapati, Jyotindra C. Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator. (English) Zbl 1484.35381 AIMS Math. 5, No. 4, 2888-2898 (2020). MSC: 35R11 65J15 PDF BibTeX XML Cite \textit{K. B. Kachhia} and \textit{J. C. Prajapati}, AIMS Math. 5, No. 4, 2888--2898 (2020; Zbl 1484.35381) Full Text: DOI OpenURL
Yang, Fan; Wang, Ni; Li, Xiao-Xiao Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain. (English) Zbl 1473.65174 J. Appl. Anal. Comput. 10, No. 2, 514-529 (2020). Reviewer: Robert Plato (Siegen) MSC: 65M32 26A33 35R11 35R25 35R30 65J20 65M30 65K10 33E12 PDF BibTeX XML Cite \textit{F. Yang} et al., J. Appl. Anal. Comput. 10, No. 2, 514--529 (2020; Zbl 1473.65174) Full Text: DOI OpenURL
Floridia, Giuseppe; Yamamoto, Masahiro Backward problems in time for fractional diffusion-wave equation. (English) Zbl 1456.35205 Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020). MSC: 35Q99 35R11 35A30 35A01 35A02 PDF BibTeX XML Cite \textit{G. Floridia} and \textit{M. Yamamoto}, Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020; Zbl 1456.35205) Full Text: DOI arXiv OpenURL
Fedorov, V. E.; Romanova, E. A. Inhomogeneous fractional evolutionary equation in the sectorial case. (English. Russian original) Zbl 1450.35265 J. Math. Sci., New York 250, No. 5, 819-829 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 103-112 (2018). MSC: 35R11 34G10 47D06 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{E. A. Romanova}, J. Math. Sci., New York 250, No. 5, 819--829 (2020; Zbl 1450.35265); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 103--112 (2018) Full Text: DOI OpenURL
Bradji, Abdallah A new analysis for the convergence of the gradient discretization method for multidimensional time fractional diffusion and diffusion-wave equations. (English) Zbl 1443.65268 Comput. Math. Appl. 79, No. 2, 500-520 (2020). MSC: 65M99 PDF BibTeX XML Cite \textit{A. Bradji}, Comput. Math. Appl. 79, No. 2, 500--520 (2020; Zbl 1443.65268) Full Text: DOI OpenURL
Ruzhansky, Michael; Tokmagambetov, Niyaz; Torebek, Berikbol T. On a non-local problem for a multi-term fractional diffusion-wave equation. (English) Zbl 1446.35253 Fract. Calc. Appl. Anal. 23, No. 2, 324-355 (2020). MSC: 35R11 33E12 26A33 35H10 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., Fract. Calc. Appl. Anal. 23, No. 2, 324--355 (2020; Zbl 1446.35253) Full Text: DOI arXiv OpenURL
Hu, Guanghui; Liu, Yikan; Yamamoto, Masahiro Inverse moving source problem for fractional diffusion(-wave) equations: determination of orbits. (English) Zbl 1443.35190 Cheng, Jin (ed.) et al., Inverse problems and related topics. Extended versions of papers based on the international conference on inverse problems, Shanghai, China, October 12–14, 2018. In honor of Masahiro Yamamoto on the occasion of his 60th anniversary. Singapore: Springer. Springer Proc. Math. Stat. 310, 81-100 (2020). MSC: 35R30 35R11 35L05 PDF BibTeX XML Cite \textit{G. Hu} et al., Springer Proc. Math. Stat. 310, 81--100 (2020; Zbl 1443.35190) Full Text: DOI arXiv OpenURL
Benkhaldoun, Fayssal; Bradji, Abdallah A second order time accurate finite volume scheme for the time-fractional diffusion wave equation on general nonconforming meshes. (English) Zbl 07223015 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 12th international conference, LSSC 2019, Sozopol, Bulgaria, June 10–14, 2019. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11958, 95-104 (2020). MSC: 65-XX PDF BibTeX XML Cite \textit{F. Benkhaldoun} and \textit{A. Bradji}, Lect. Notes Comput. Sci. 11958, 95--104 (2020; Zbl 07223015) Full Text: DOI OpenURL
Xian, Jun; Yan, Xiong-bin; Wei, Ting Simultaneous identification of three parameters in a time-fractional diffusion-wave equation by a part of boundary Cauchy data. (English) Zbl 07212660 Appl. Math. Comput. 384, Article ID 125382, 21 p. (2020). MSC: 35-XX 45-XX PDF BibTeX XML Cite \textit{J. Xian} et al., Appl. Math. Comput. 384, Article ID 125382, 21 p. (2020; Zbl 07212660) Full Text: DOI OpenURL
Xu, Xiaoyong; Zhou, Fengying Crank-Nicolson orthogonal spline collocation method combined with WSGI difference scheme for the two-dimensional time-fractional diffusion-wave equation. (English) Zbl 1442.65412 Open Math. 18, 67-86 (2020). MSC: 65N35 65M06 65M12 65D07 26A33 35R11 35R09 45K05 PDF BibTeX XML Cite \textit{X. Xu} and \textit{F. Zhou}, Open Math. 18, 67--86 (2020; Zbl 1442.65412) Full Text: DOI OpenURL
Sun, Zhi-zhong; Ji, Cui-cui; Du, Ruilian A new analytical technique of the \(L\)-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations. (English) Zbl 07206944 Appl. Math. Lett. 102, Article ID 106115, 7 p. (2020). MSC: 65-XX 26-XX PDF BibTeX XML Cite \textit{Z.-z. Sun} et al., Appl. Math. Lett. 102, Article ID 106115, 7 p. (2020; Zbl 07206944) Full Text: DOI OpenURL
Luo, Zhendong; Wang, Hui A highly efficient reduced-order extrapolated finite difference algorithm for time-space tempered fractional diffusion-wave equation. (English) Zbl 1440.65093 Appl. Math. Lett. 102, Article ID 106090, 8 p. (2020). MSC: 65M06 65N06 65M99 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Luo} and \textit{H. Wang}, Appl. Math. Lett. 102, Article ID 106090, 8 p. (2020; Zbl 1440.65093) Full Text: DOI OpenURL
Abdelkawy, M. A.; Babatin, Mohammed M.; Lopes, António M. Highly accurate technique for solving distributed-order time-fractional-sub-diffusion equations of fourth order. (English) Zbl 1449.65270 Comput. Appl. Math. 39, No. 2, Paper No. 65, 22 p. (2020). MSC: 65M70 41A55 35R11 26A33 65D32 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., Comput. Appl. Math. 39, No. 2, Paper No. 65, 22 p. (2020; Zbl 1449.65270) Full Text: DOI OpenURL
Jiang, Suzhen; Liao, Kaifang; Wei, Ting Inversion of the initial value for a time-fractional diffusion-wave equation by boundary data. (English) Zbl 1437.65124 Comput. Methods Appl. Math. 20, No. 1, 109-120 (2020). MSC: 65M32 65M30 65J20 65K10 65F22 44A10 26A33 35R11 35A02 PDF BibTeX XML Cite \textit{S. Jiang} et al., Comput. Methods Appl. Math. 20, No. 1, 109--120 (2020; Zbl 1437.65124) Full Text: DOI OpenURL
Yang, Fan; Zhang, Yan; Li, Xiao-Xiao Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. (English) Zbl 07191904 Numer. Algorithms 83, No. 4, 1509-1530 (2020). MSC: 65-XX PDF BibTeX XML Cite \textit{F. Yang} et al., Numer. Algorithms 83, No. 4, 1509--1530 (2020; Zbl 07191904) Full Text: DOI OpenURL
Ramesh, R.; Harikrishnan, S.; Nieto, J. J.; Prakash, P. Oscillation of time fractional vector diffusion-wave equation with fractional damping. (English) Zbl 1445.35311 Opusc. Math. 40, No. 2, 291-305 (2020). MSC: 35R11 35B05 PDF BibTeX XML Cite \textit{R. Ramesh} et al., Opusc. Math. 40, No. 2, 291--305 (2020; Zbl 1445.35311) Full Text: DOI OpenURL
Zheng, Yunying; Zhao, Zhengang The time discontinuous space-time finite element method for fractional diffusion-wave equation. (English) Zbl 1434.65198 Appl. Numer. Math. 150, 105-116 (2020). MSC: 65M60 35Q99 35R11 26A33 65M12 35Q53 65J10 PDF BibTeX XML Cite \textit{Y. Zheng} and \textit{Z. Zhao}, Appl. Numer. Math. 150, 105--116 (2020; Zbl 1434.65198) Full Text: DOI OpenURL
Ruzhansky, M.; Tokmagambetov, N.; Torebek, B. T. Bitsadze-Samarskii type problem for the integro-differential diffusion-wave equation on the Heisenberg group. (English) Zbl 1442.45010 Integral Transforms Spec. Funct. 31, No. 1, 1-9 (2020). MSC: 45K05 35R11 34B10 35R03 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., Integral Transforms Spec. Funct. 31, No. 1, 1--9 (2020; Zbl 1442.45010) Full Text: DOI OpenURL
Chen, Wenping; Lü, Shujuan; Chen, Hu; Jiang, Lihua Analysis of two Legendre spectral approximations for the variable-coefficient fractional diffusion-wave equation. (English) Zbl 07532416 Adv. Difference Equ. 2019, Paper No. 418, 23 p. (2019). MSC: 65M06 65M12 65M70 35R11 26A33 PDF BibTeX XML Cite \textit{W. Chen} et al., Adv. Difference Equ. 2019, Paper No. 418, 23 p. (2019; Zbl 07532416) Full Text: DOI OpenURL
Soltani Sarvestani, F.; Heydari, M. H.; Niknam, A.; Avazzadeh, Z. A wavelet approach for the multi-term time fractional diffusion-wave equation. (English) Zbl 07474800 Int. J. Comput. Math. 96, No. 3, 640-661 (2019). MSC: 65M60 35R11 65T60 PDF BibTeX XML Cite \textit{F. Soltani Sarvestani} et al., Int. J. Comput. Math. 96, No. 3, 640--661 (2019; Zbl 07474800) Full Text: DOI OpenURL
Qasemi, S.; Rostamy, D. New local discontinuous Galerkin method for a fractional time diffusion wave equation. (English) Zbl 07474769 Int. J. Comput. Math. 96, No. 9, 1818-1838 (2019). MSC: 65M12 65M15 65M60 82D10 35L80 PDF BibTeX XML Cite \textit{S. Qasemi} and \textit{D. Rostamy}, Int. J. Comput. Math. 96, No. 9, 1818--1838 (2019; Zbl 07474769) Full Text: DOI OpenURL
Gong, Xuhong; Wei, Ting Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation. (English) Zbl 1465.65089 Inverse Probl. Sci. Eng. 27, No. 11, 1577-1594 (2019). MSC: 65M32 35R11 35D30 45D05 65R30 65J20 PDF BibTeX XML Cite \textit{X. Gong} and \textit{T. Wei}, Inverse Probl. Sci. Eng. 27, No. 11, 1577--1594 (2019; Zbl 1465.65089) Full Text: DOI OpenURL
Huang, Jianfei; Arshad, Sadia; Jiao, Yandong; Tang, Yifa Convolution quadrature methods for time-space fractional nonlinear diffusion-wave equations. (English) Zbl 1468.65097 East Asian J. Appl. Math. 9, No. 3, 538-557 (2019). MSC: 65M06 65M12 65D30 35R09 35R11 PDF BibTeX XML Cite \textit{J. Huang} et al., East Asian J. Appl. Math. 9, No. 3, 538--557 (2019; Zbl 1468.65097) Full Text: DOI OpenURL
Liao, Kai Fang; Li, Yu Shan; Wei, Ting The identification of the time-dependent source term in time-fractional diffusion-wave equations. (English) Zbl 1468.65128 East Asian J. Appl. Math. 9, No. 2, 330-354 (2019). MSC: 65M32 65M60 65K10 65J20 35R30 35R25 35R11 PDF BibTeX XML Cite \textit{K. F. Liao} et al., East Asian J. Appl. Math. 9, No. 2, 330--354 (2019; Zbl 1468.65128) Full Text: DOI OpenURL
Feng, Libo; Liu, Fawang; Turner, Ian Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. (English) Zbl 1464.65119 Commun. Nonlinear Sci. Numer. Simul. 70, 354-371 (2019). MSC: 65M60 PDF BibTeX XML Cite \textit{L. Feng} et al., Commun. Nonlinear Sci. Numer. Simul. 70, 354--371 (2019; Zbl 1464.65119) Full Text: DOI Link OpenURL
Xian, J.; Wei, Ting Determination of the initial data in a time-fractional diffusion-wave problem by a final time data. (English) Zbl 1443.35179 Comput. Math. Appl. 78, No. 8, 2525-2540 (2019). MSC: 35R11 PDF BibTeX XML Cite \textit{J. Xian} and \textit{T. Wei}, Comput. Math. Appl. 78, No. 8, 2525--2540 (2019; Zbl 1443.35179) Full Text: DOI OpenURL
Kumar, Alpesh; Bhardwaj, Akanksha; Kumar, B. V. Rathish A meshless local collocation method for time fractional diffusion wave equation. (English) Zbl 1442.65293 Comput. Math. Appl. 78, No. 6, 1851-1861 (2019). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{A. Kumar} et al., Comput. Math. Appl. 78, No. 6, 1851--1861 (2019; Zbl 1442.65293) Full Text: DOI OpenURL
Khalid, Nauman; Abbas, Muhammad; Iqbal, Muhammad Kashif; Baleanu, Dumitru A numerical algorithm based on modified extended B-spline functions for solving time-fractional diffusion wave equation involving reaction and damping terms. (English) Zbl 1459.65198 Adv. Difference Equ. 2019, Paper No. 378, 19 p. (2019). MSC: 65M70 35R11 26A33 65M06 PDF BibTeX XML Cite \textit{N. Khalid} et al., Adv. Difference Equ. 2019, Paper No. 378, 19 p. (2019; Zbl 1459.65198) Full Text: DOI OpenURL
Shekari, Younes; Tayebi, Ali; Heydari, Mohammad Hossein A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. (English) Zbl 1441.65079 Comput. Methods Appl. Mech. Eng. 350, 154-168 (2019). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{Y. Shekari} et al., Comput. Methods Appl. Mech. Eng. 350, 154--168 (2019; Zbl 1441.65079) Full Text: DOI OpenURL
Prakash, Amit; Kumar, Manoj Fractional variational iteration method for time fractional fourth-order diffusion-wave equation. (English) Zbl 1429.65263 Singh, Jagdev (ed.) et al., Mathematical modelling, applied analysis and computation. Selected papers of the first international conference, ICMMAAC 2018, JECRC University, Jaipur, India, July 6–8, 2018. Singapore: Springer. Springer Proc. Math. Stat. 272, 169-178 (2019). MSC: 65M99 35R11 35L05 PDF BibTeX XML Cite \textit{A. Prakash} and \textit{M. Kumar}, Springer Proc. Math. Stat. 272, 169--178 (2019; Zbl 1429.65263) Full Text: DOI OpenURL
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Yang, Yin A computational method for solving variable-order fractional nonlinear diffusion-wave equation. (English) Zbl 1429.65240 Appl. Math. Comput. 352, 235-248 (2019). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Math. Comput. 352, 235--248 (2019; Zbl 1429.65240) Full Text: DOI OpenURL
An, Na; Huang, Chaobao; Yu, Xijun Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation. (English) Zbl 1429.65224 Appl. Math. Comput. 349, 148-157 (2019). MSC: 65M60 35R11 65M15 PDF BibTeX XML Cite \textit{N. An} et al., Appl. Math. Comput. 349, 148--157 (2019; Zbl 1429.65224) Full Text: DOI OpenURL
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Haromi, Malih Farzi A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. (English) Zbl 1429.65239 Appl. Math. Comput. 341, 215-228 (2019). MSC: 65M70 35R11 65T60 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Math. Comput. 341, 215--228 (2019; Zbl 1429.65239) Full Text: DOI OpenURL
Nemati, Somayeh; Babaei, Afshin A numerical method based on the Jacobi polynomials to reconstruct an unknown source term in a time fractional diffusion-wave equation. (English) Zbl 1428.65032 Taiwanese J. Math. 23, No. 5, 1271-1289 (2019). MSC: 65M32 35R11 35R30 33C45 65J20 65M30 PDF BibTeX XML Cite \textit{S. Nemati} and \textit{A. Babaei}, Taiwanese J. Math. 23, No. 5, 1271--1289 (2019; Zbl 1428.65032) Full Text: DOI Euclid OpenURL
Liao, Kaifang; Wei, Ting Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously. (English) Zbl 1442.65230 Inverse Probl. 35, No. 11, Article ID 115002, 23 p. (2019). MSC: 65M32 65M06 65N30 65K10 35R11 26A33 35A01 35A02 35B65 35R35 PDF BibTeX XML Cite \textit{K. Liao} and \textit{T. Wei}, Inverse Probl. 35, No. 11, Article ID 115002, 23 p. (2019; Zbl 1442.65230) Full Text: DOI OpenURL
Sandev, Trifce; Tomovski, Zivorad; Dubbeldam, Johan L. A.; Chechkin, Aleksei Generalized diffusion-wave equation with memory kernel. (English) Zbl 1422.35118 J. Phys. A, Math. Theor. 52, No. 1, Article ID 015201, 22 p. (2019). MSC: 35K57 35L05 35R11 35A08 60J60 47G20 33E12 PDF BibTeX XML Cite \textit{T. Sandev} et al., J. Phys. A, Math. Theor. 52, No. 1, Article ID 015201, 22 p. (2019; Zbl 1422.35118) Full Text: DOI arXiv OpenURL
Zhang, Hui; Jiang, Xiaoyun Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation. (English) Zbl 07106383 Appl. Numer. Math. 146, 1-12 (2019). MSC: 65Mxx 35Qxx PDF BibTeX XML Cite \textit{H. Zhang} and \textit{X. Jiang}, Appl. Numer. Math. 146, 1--12 (2019; Zbl 07106383) Full Text: DOI OpenURL
Luchko, Yu. Subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation. (English) Zbl 1461.35007 Theory Probab. Math. Stat. 98, 127-147 (2019) and Teor. Jmovirn. Mat. Stat. 98, 121-141 (2018). MSC: 35A08 35R11 26A33 35C05 35E05 35L05 45K05 60E99 PDF BibTeX XML Cite \textit{Yu. Luchko}, Theory Probab. Math. Stat. 98, 127--147 (2019; Zbl 1461.35007) Full Text: DOI arXiv OpenURL
Du, Ruilian; Yan, Yubin; Liang, Zongqi A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation. (English) Zbl 1416.65258 J. Comput. Phys. 376, 1312-1330 (2019). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{R. Du} et al., J. Comput. Phys. 376, 1312--1330 (2019; Zbl 1416.65258) Full Text: DOI Link OpenURL
Sun, Hong; Zhao, Xuan; Sun, Zhi-Zhong The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. (English) Zbl 1437.35696 J. Sci. Comput. 78, No. 1, 467-498 (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 35R11 65N06 35L05 35J05 45K05 60J60 60G50 60G51 42A38 PDF BibTeX XML Cite \textit{H. Sun} et al., J. Sci. Comput. 78, No. 1, 467--498 (2019; Zbl 1437.35696) Full Text: DOI OpenURL
Liu, Zeting; Liu, Fawang; Zeng, Fanhai An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations. (English) Zbl 1407.65114 Appl. Numer. Math. 136, 139-151 (2019). MSC: 65M06 65N35 35R11 65M12 65M15 35Q35 76A10 PDF BibTeX XML Cite \textit{Z. Liu} et al., Appl. Numer. Math. 136, 139--151 (2019; Zbl 1407.65114) Full Text: DOI arXiv OpenURL
Fu, Zhuo-Jia; Yang, Li-Wen; Zhu, Hui-Qing; Xu, Wen-Zhi A semi-analytical collocation Trefftz scheme for solving multi-term time fractional diffusion-wave equations. (English) Zbl 1404.65193 Eng. Anal. Bound. Elem. 98, 137-146 (2019). MSC: 65M70 35R11 65M15 PDF BibTeX XML Cite \textit{Z.-J. Fu} et al., Eng. Anal. Bound. Elem. 98, 137--146 (2019; Zbl 1404.65193) Full Text: DOI OpenURL
Ding, Hengfei A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. (English) Zbl 1404.65085 Appl. Numer. Math. 135, 30-46 (2019). MSC: 65M06 35R11 26A33 65M12 PDF BibTeX XML Cite \textit{H. Ding}, Appl. Numer. Math. 135, 30--46 (2019; Zbl 1404.65085) Full Text: DOI OpenURL
Huang, Chaobao; An, Na; Yu, Xijun A fully discrete direct discontinuous Galerkin method for the fractional diffusion-wave equation. (English) Zbl 1460.65122 Appl. Anal. 97, No. 4, 659-675 (2018). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{C. Huang} et al., Appl. Anal. 97, No. 4, 659--675 (2018; Zbl 1460.65122) Full Text: DOI OpenURL
Shi, Z. G.; Zhao, Y. M.; Liu, F.; Wang, F. L.; Tang, Y. F. Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes. (English) Zbl 1427.65260 Appl. Math. Comput. 338, 290-304 (2018). MSC: 65M60 65M12 35R11 PDF BibTeX XML Cite \textit{Z. G. Shi} et al., Appl. Math. Comput. 338, 290--304 (2018; Zbl 1427.65260) Full Text: DOI Link OpenURL
Li, Xuhao; Wong, Patricia J. Y. A non-polynomial numerical scheme for fourth-order fractional diffusion-wave model. (English) Zbl 1427.65293 Appl. Math. Comput. 331, 80-95 (2018). MSC: 65M70 35R11 65M12 PDF BibTeX XML Cite \textit{X. Li} and \textit{P. J. Y. Wong}, Appl. Math. Comput. 331, 80--95 (2018; Zbl 1427.65293) Full Text: DOI OpenURL
Bazhlekova, Emilia Subordination in a class of generalized time-fractional diffusion-wave equations. (English) Zbl 1418.35356 Fract. Calc. Appl. Anal. 21, No. 4, 869-900 (2018). MSC: 35R11 35E05 35L05 35Q74 74D05 PDF BibTeX XML Cite \textit{E. Bazhlekova}, Fract. Calc. Appl. Anal. 21, No. 4, 869--900 (2018; Zbl 1418.35356) Full Text: DOI OpenURL
Soori, Z.; Aminataei, A. Effect of the nodes near boundary points on the stability analysis of sixth-order compact finite difference ADI scheme for the two-dimensional time fractional diffusion-wave equation. (English) Zbl 1416.65283 Trans. A. Razmadze Math. Inst. 172, No. 3, Part B, 582-605 (2018). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{Z. Soori} and \textit{A. Aminataei}, Trans. A. Razmadze Math. Inst. 172, No. 3, Part B, 582--605 (2018; Zbl 1416.65283) Full Text: DOI OpenURL
Ba, Yuming; Jiang, Lijian; Ou, Na A two-stage ensemble Kalman filter based on multiscale model reduction for inverse problems in time fractional diffusion-wave equations. (English) Zbl 1416.65163 J. Comput. Phys. 374, 300-330 (2018). MSC: 65J22 62F15 62M20 PDF BibTeX XML Cite \textit{Y. Ba} et al., J. Comput. Phys. 374, 300--330 (2018; Zbl 1416.65163) Full Text: DOI arXiv OpenURL
Wei, Ting; Zhang, Yun The backward problem for a time-fractional diffusion-wave equation in a bounded domain. (English) Zbl 1417.35224 Comput. Math. Appl. 75, No. 10, 3632-3648 (2018). MSC: 35R11 35R25 PDF BibTeX XML Cite \textit{T. Wei} and \textit{Y. Zhang}, Comput. Math. Appl. 75, No. 10, 3632--3648 (2018; Zbl 1417.35224) Full Text: DOI OpenURL
Dehghan, Mehdi; Abbaszadeh, Mostafa A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. (English) Zbl 1415.65224 Comput. Math. Appl. 75, No. 8, 2903-2914 (2018). MSC: 65M60 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Abbaszadeh}, Comput. Math. Appl. 75, No. 8, 2903--2914 (2018; Zbl 1415.65224) Full Text: DOI OpenURL
Liu, Haiyu; Lü, Shujuan Gauss-Lobatto-Legendre-Birkhoff pseudospectral approximations for the multi-term time fractional diffusion-wave equation with Neumann boundary conditions. (English) Zbl 1407.65113 Numer. Methods Partial Differ. Equations 34, No. 6, 2217-2236 (2018). MSC: 65M06 65M70 35R11 65M12 PDF BibTeX XML Cite \textit{H. Liu} and \textit{S. Lü}, Numer. Methods Partial Differ. Equations 34, No. 6, 2217--2236 (2018; Zbl 1407.65113) Full Text: DOI OpenURL
Li, Xuhao; Wong, Patricia J. Y. An efficient numerical treatment of fourth-order fractional diffusion-wave problems. (English) Zbl 1407.74099 Numer. Methods Partial Differ. Equations 34, No. 4, 1324-1347 (2018). MSC: 74S20 76M20 65M06 65D07 35R11 76Q05 86A15 35Q35 35Q74 74D10 65M12 PDF BibTeX XML Cite \textit{X. Li} and \textit{P. J. Y. Wong}, Numer. Methods Partial Differ. Equations 34, No. 4, 1324--1347 (2018; Zbl 1407.74099) Full Text: DOI OpenURL
Aslefallah, Mohammad; Shivanian, Elyas An efficient meshless method based on RBFs for the time fractional diffusion-wave equation. (English) Zbl 1413.65319 Afr. Mat. 29, No. 7-8, 1203-1214 (2018). MSC: 65M06 65N12 26A33 35R11 65M70 41A15 PDF BibTeX XML Cite \textit{M. Aslefallah} and \textit{E. Shivanian}, Afr. Mat. 29, No. 7--8, 1203--1214 (2018; Zbl 1413.65319) Full Text: DOI OpenURL
Fan, Wenping; Jiang, Xiaoyun; Liu, Fawang; Anh, Vo The unstructured mesh finite element method for the two-dimensional multi-term time-space fractional diffusion-wave equation on an irregular convex domain. (English) Zbl 1407.65156 J. Sci. Comput. 77, No. 1, 27-52 (2018). MSC: 65M60 65M12 26A33 65N30 35R11 65M06 35Q35 76A05 PDF BibTeX XML Cite \textit{W. Fan} et al., J. Sci. Comput. 77, No. 1, 27--52 (2018; Zbl 1407.65156) Full Text: DOI OpenURL
Wei, Ya-Bing; Zhao, Yan-Min; Shi, Zheng-Guang; Wang, Fen-Ling; Tang, Yi-Fa Spatial high accuracy analysis of FEM for two-dimensional multi-term time-fractional diffusion-wave equations. (English) Zbl 1404.65126 Acta Math. Appl. Sin., Engl. Ser. 34, No. 4, 828-841 (2018). MSC: 65M12 65M60 35R11 65M06 65M15 PDF BibTeX XML Cite \textit{Y.-B. Wei} et al., Acta Math. Appl. Sin., Engl. Ser. 34, No. 4, 828--841 (2018; Zbl 1404.65126) Full Text: DOI OpenURL
Lukashchuk, Stanislav Yu.; Saburova, Regina D. Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type. (English) Zbl 1398.35275 Nonlinear Dyn. 93, No. 2, 295-305 (2018). MSC: 35R11 76S05 35Q35 PDF BibTeX XML Cite \textit{S. Yu. Lukashchuk} and \textit{R. D. Saburova}, Nonlinear Dyn. 93, No. 2, 295--305 (2018; Zbl 1398.35275) Full Text: DOI OpenURL
Zhang, Congguang; Qiu, Ling Research on the solution for a space-time fractional diffusion model of porous media. (Chinese. English summary) Zbl 1413.65335 Numer. Math., Nanjing 40, No. 1, 1-11 (2018). MSC: 65M06 65M12 26A33 35R11 76S05 65M15 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{L. Qiu}, Numer. Math., Nanjing 40, No. 1, 1--11 (2018; Zbl 1413.65335) OpenURL
Liu, Zhengguang; Cheng, Aijie; Li, Xiaoli A novel finite difference discrete scheme for the time fractional diffusion-wave equation. (English) Zbl 1397.65141 Appl. Numer. Math. 134, 17-30 (2018). MSC: 65M06 35R11 65M12 35R09 65M15 PDF BibTeX XML Cite \textit{Z. Liu} et al., Appl. Numer. Math. 134, 17--30 (2018; Zbl 1397.65141) Full Text: DOI OpenURL
Dehghan, Mehdi; Abbaszadeh, Mostafa A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. (English) Zbl 1395.65098 Math. Methods Appl. Sci. 41, No. 9, 3476-3494 (2018). MSC: 65M70 65M06 65M12 65M60 35R11 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Abbaszadeh}, Math. Methods Appl. Sci. 41, No. 9, 3476--3494 (2018; Zbl 1395.65098) Full Text: DOI OpenURL
Li, Xiaoli; Rui, Hongxing A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation. (English) Zbl 1395.65023 Appl. Numer. Math. 131, 123-139 (2018). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, Appl. Numer. Math. 131, 123--139 (2018; Zbl 1395.65023) Full Text: DOI OpenURL
Soori, Z.; Aminataei, A. Sixth-order non-uniform combined compact difference scheme for multi-term time fractional diffusion-wave equation. (English) Zbl 1393.65017 Appl. Numer. Math. 131, 72-94 (2018). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{Z. Soori} and \textit{A. Aminataei}, Appl. Numer. Math. 131, 72--94 (2018; Zbl 1393.65017) Full Text: DOI OpenURL
Zhang, Y. D.; Zhao, Y. M.; Wang, F. L.; Tang, Y. F. High-accuracy finite element method for 2D time fractional diffusion-wave equation on anisotropic meshes. (English) Zbl 1390.65151 Int. J. Comput. Math. 95, No. 1, 218-230 (2018). MSC: 65N30 35R11 PDF BibTeX XML Cite \textit{Y. D. Zhang} et al., Int. J. Comput. Math. 95, No. 1, 218--230 (2018; Zbl 1390.65151) Full Text: DOI OpenURL
Bazhlekova, Emilia; Bazhlekov, Ivan Subordination approach to multi-term time-fractional diffusion-wave equations. (English) Zbl 06867151 J. Comput. Appl. Math. 339, 179-192 (2018). MSC: 35-XX 45-XX PDF BibTeX XML Cite \textit{E. Bazhlekova} and \textit{I. Bazhlekov}, J. Comput. Appl. Math. 339, 179--192 (2018; Zbl 06867151) Full Text: DOI arXiv OpenURL
Bradji, Abdallah Notes on the convergence order of gradient schemes for time fractional differential equations. (Notes sur l’ordre de convergence de la méthode GD pour les équations fractionnaires en temps.) (English. French summary) Zbl 1447.65071 C. R., Math., Acad. Sci. Paris 356, No. 4, 439-448 (2018). Reviewer: Kai Diethelm (Schweinfurt) MSC: 65M60 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{A. Bradji}, C. R., Math., Acad. Sci. Paris 356, No. 4, 439--448 (2018; Zbl 1447.65071) Full Text: DOI OpenURL
Goos, Demian Nahuel; Reyero, Gabriela Fernanda Mathematical analysis of a Cauchy problem for the time-fractional diffusion-wave equation with \( \alpha \in (0,2) \). (English) Zbl 1394.35553 J. Fourier Anal. Appl. 24, No. 2, 560-582 (2018). Reviewer: Abdallah Bradji (Annaba) MSC: 35R11 33E12 35G10 42A38 PDF BibTeX XML Cite \textit{D. N. Goos} and \textit{G. F. Reyero}, J. Fourier Anal. Appl. 24, No. 2, 560--582 (2018; Zbl 1394.35553) Full Text: DOI OpenURL
Califano, Giovanna; Conte, Dajana Optimal Schwarz waveform relaxation for fractional diffusion-wave equations. (English) Zbl 1382.65300 Appl. Numer. Math. 127, 125-141 (2018). MSC: 65M55 35L05 35R11 65M12 PDF BibTeX XML Cite \textit{G. Califano} and \textit{D. Conte}, Appl. Numer. Math. 127, 125--141 (2018; Zbl 1382.65300) Full Text: DOI OpenURL
Chen, Hu; Lü, Shujuan; Chen, Wenping A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients. (English) Zbl 1376.65112 J. Comput. Appl. Math. 330, 380-397 (2018). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 35K05 35L05 35R11 65M70 65M12 65M15 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Comput. Appl. Math. 330, 380--397 (2018; Zbl 1376.65112) Full Text: DOI OpenURL
Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. (English) Zbl 1439.65081 Comput. Methods Appl. Mech. Eng. 327, 478-502 (2017). MSC: 65L06 34A08 35R11 65M06 PDF BibTeX XML Cite \textit{F. Zeng} et al., Comput. Methods Appl. Mech. Eng. 327, 478--502 (2017; Zbl 1439.65081) Full Text: DOI arXiv OpenURL
Chatterjee, Avipsita; Basu, Uma; Mandal, B. N. Numerical algorithm based on Bernstein polynomials for solving nonlinear fractional diffusion-wave equation. (English) Zbl 1427.65283 Int. J. Adv. Appl. Math. Mech. 5, No. 2, 9-15 (2017). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{A. Chatterjee} et al., Int. J. Adv. Appl. Math. Mech. 5, No. 2, 9--15 (2017; Zbl 1427.65283) Full Text: Link OpenURL
Wei, Leilei Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation. (English) Zbl 1411.65135 Appl. Math. Comput. 304, 180-189 (2017). MSC: 65M60 35R11 35S10 65M12 PDF BibTeX XML Cite \textit{L. Wei}, Appl. Math. Comput. 304, 180--189 (2017; Zbl 1411.65135) Full Text: DOI arXiv OpenURL