Wang, Ying; Liu, Fawang; Mei, Liquan; Anh, Vo V. A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions. (English) Zbl 07331337 Numer. Algorithms 86, No. 4, 1443-1474 (2021). MSC: 65 PDF BibTeX XML Cite \textit{Y. Wang} et al., Numer. Algorithms 86, No. 4, 1443--1474 (2021; Zbl 07331337) Full Text: DOI
Li, Qingfeng; Chen, Yanping; Huang, Yunqing; Wang, Yang Two-grid methods for nonlinear time fractional diffusion equations by \(L 1\)-Galerkin FEM. (English) Zbl 07331068 Math. Comput. Simul. 185, 436-451 (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{Q. Li} et al., Math. Comput. Simul. 185, 436--451 (2021; Zbl 07331068) Full Text: DOI
Zguaid, Khalid; El Alaoui, Fatima Zahrae; Boutoulout, Ali Regional observability for linear time fractional systems. (English) Zbl 07331048 Math. Comput. Simul. 185, 77-87 (2021). MSC: 93 35 PDF BibTeX XML Cite \textit{K. Zguaid} et al., Math. Comput. Simul. 185, 77--87 (2021; Zbl 07331048) Full Text: DOI
Hejazi, S. Reza; Saberi, Elaheh; Mohammadizadeh, Fatemeh Anisotropic non-linear time-fractional diffusion equation with a source term: classification via Lie point symmetries, analytic solutions and numerical simulation. (English) Zbl 07330455 Appl. Math. Comput. 391, Article ID 125652, 22 p. (2021). MSC: 34A08 35R11 26A33 58D19 80M22 65N35 PDF BibTeX XML Cite \textit{S. R. Hejazi} et al., Appl. Math. Comput. 391, Article ID 125652, 22 p. (2021; Zbl 07330455) Full Text: DOI
Qu, Haidong; She, Zihang; Liu, Xuan Neural network method for solving fractional diffusion equations. (English) Zbl 07330445 Appl. Math. Comput. 391, Article ID 125635, 25 p. (2021). MSC: 68 65 PDF BibTeX XML Cite \textit{H. Qu} et al., Appl. Math. Comput. 391, Article ID 125635, 25 p. (2021; Zbl 07330445) Full Text: DOI
Wang, Jin-Liang; Li, Hui-Feng Memory-dependent derivative versus fractional derivative (II): remodelling diffusion process. (English) Zbl 07330438 Appl. Math. Comput. 391, Article ID 125627, 13 p. (2021). MSC: 34A08 35K05 PDF BibTeX XML Cite \textit{J.-L. Wang} and \textit{H.-F. Li}, Appl. Math. Comput. 391, Article ID 125627, 13 p. (2021; Zbl 07330438) Full Text: DOI
Jiang, Su Zhen; Wu, Yu Jiang Recovering a time-dependent potential function in a multi-term time fractional diffusion equation by using a nonlinear condition. (English) Zbl 07330240 J. Inverse Ill-Posed Probl. 29, No. 2, 233-248 (2021). MSC: 35R30 35R11 35R25 35K20 65M32 PDF BibTeX XML Cite \textit{S. Z. Jiang} and \textit{Y. J. Wu}, J. Inverse Ill-Posed Probl. 29, No. 2, 233--248 (2021; Zbl 07330240) Full Text: DOI
Zheng, Xiangcheng; Li, Yiqun; Cheng, Jin; Wang, Hong Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: analysis and simulation. (English) Zbl 07330239 J. Inverse Ill-Posed Probl. 29, No. 2, 219-231 (2021). MSC: 65 34A08 34A55 PDF BibTeX XML Cite \textit{X. Zheng} et al., J. Inverse Ill-Posed Probl. 29, No. 2, 219--231 (2021; Zbl 07330239) Full Text: DOI
Ke, Tran Dinh; Tuan, Tran Van An identification problem involving fractional differential variational inequalities. (English) Zbl 07330237 J. Inverse Ill-Posed Probl. 29, No. 2, 185-202 (2021). MSC: 35R30 35J85 35R11 93B30 PDF BibTeX XML Cite \textit{T. D. Ke} and \textit{T. Van Tuan}, J. Inverse Ill-Posed Probl. 29, No. 2, 185--202 (2021; Zbl 07330237) Full Text: DOI
Lopushansky, Andriy; Lopushansky, Oleh; Sharyn, Sergii Nonlinear inverse problem of control diffusivity parameter determination for a space-time fractional diffusion equation. (English) Zbl 07330162 Appl. Math. Comput. 390, Article ID 125589, 9 p. (2021). MSC: 35C05 PDF BibTeX XML Cite \textit{A. Lopushansky} et al., Appl. Math. Comput. 390, Article ID 125589, 9 p. (2021; Zbl 07330162) Full Text: DOI
Ferreira, R.; De Pablo, A. Blow-up rates for a fractional heat equation. (English) Zbl 07329486 Proc. Am. Math. Soc. 149, No. 5, 2011-2018 (2021). MSC: 35B44 35K57 35R11 PDF BibTeX XML Cite \textit{R. Ferreira} and \textit{A. De Pablo}, Proc. Am. Math. Soc. 149, No. 5, 2011--2018 (2021; Zbl 07329486) Full Text: DOI
Suzuki, Masamitsu Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems. (English) Zbl 07328519 SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021). MSC: 35R11 35K57 35K51 35A01 26A33 46E35 PDF BibTeX XML Cite \textit{M. Suzuki}, SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021; Zbl 07328519) Full Text: DOI
Pang, Hong-Kui; Qin, Hai-Hua; Sun, Hai-Wei; Ma, Ting-Ting Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations. (English) Zbl 07327224 Comput. Math. Appl. 85, 18-29 (2021). MSC: 65 26 PDF BibTeX XML Cite \textit{H.-K. Pang} et al., Comput. Math. Appl. 85, 18--29 (2021; Zbl 07327224) Full Text: DOI
Coville, Jérôme; Gui, Changfeng; Zhao, Mingfeng Propagation acceleration in reaction diffusion equations with anomalous diffusions. (English) Zbl 07324160 Nonlinearity 34, No. 3, 1544-1576 (2021). MSC: 35B51 35K15 35K55 35K57 35R09 35R11 35C07 PDF BibTeX XML Cite \textit{J. Coville} et al., Nonlinearity 34, No. 3, 1544--1576 (2021; Zbl 07324160) Full Text: DOI
Song, Xiaona; Li, Xingru; Song, Shuai; Zhang, Yijun; Ning, Zhaoke Quasi-synchronization of coupled neural networks with reaction-diffusion terms driven by fractional Brownian motion. (English) Zbl 07323710 J. Franklin Inst. 358, No. 4, 2482-2499 (2021). MSC: 93B70 93C20 35K57 93C57 60G22 PDF BibTeX XML Cite \textit{X. Song} et al., J. Franklin Inst. 358, No. 4, 2482--2499 (2021; Zbl 07323710) Full Text: DOI
Li, Xuhao; Wong, Patricia J. Y. Generalized Alikhanov’s approximation and numerical treatment of generalized fractional sub-diffusion equations. (English) Zbl 07323664 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105719, 18 p. (2021). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{X. Li} and \textit{P. J. Y. Wong}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105719, 18 p. (2021; Zbl 07323664) Full Text: DOI
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via phaselift. (English) Zbl 07323237 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). MSC: 65M32 65T50 49M37 90C25 35R11 35R60 60G60 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 07323237) Full Text: DOI
Brauner, Claude-Michel; Roussarie, Robert; Shang, Peipei; Zhang, Linwan Existence of a traveling wave solution in a free interface problem with fractional order kinetics. (English) Zbl 07319412 J. Differ. Equations 281, 105-147 (2021). MSC: 35R35 35C07 34C05 34A26 80A25 35K57 35B35 35K40 80A25 PDF BibTeX XML Cite \textit{C.-M. Brauner} et al., J. Differ. Equations 281, 105--147 (2021; Zbl 07319412) Full Text: DOI
Almushaira, M.; Bhatt, H.; Al-rassas, A. M. Fast high-order method for multi-dimensional space-fractional reaction-diffusion equations with general boundary conditions. (English) Zbl 07318254 Math. Comput. Simul. 182, 235-258 (2021). MSC: 65D 65F 35R PDF BibTeX XML Cite \textit{M. Almushaira} et al., Math. Comput. Simul. 182, 235--258 (2021; Zbl 07318254) Full Text: DOI
Luo, Wei-Hua; Gu, Xian-Ming; Yang, Liu; Meng, Jing A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation. (English) Zbl 07318242 Math. Comput. Simul. 182, 1-24 (2021). MSC: 60G 65M 35R PDF BibTeX XML Cite \textit{W.-H. Luo} et al., Math. Comput. Simul. 182, 1--24 (2021; Zbl 07318242) Full Text: DOI
Wang, Yuan-Ming A high-order compact difference method on fitted meshes for Neumann problems of time-fractional reaction-diffusion equations with variable coefficients. (English) Zbl 07318237 Math. Comput. Simul. 181, 598-623 (2021). MSC: 65M PDF BibTeX XML Cite \textit{Y.-M. Wang}, Math. Comput. Simul. 181, 598--623 (2021; Zbl 07318237) Full Text: DOI
Dwivedi, Kushal Dhar; Singh, Jagdev Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method. (English) Zbl 07318208 Math. Comput. Simul. 181, 38-50 (2021). MSC: 65M 35R PDF BibTeX XML Cite \textit{K. D. Dwivedi} and \textit{J. Singh}, Math. Comput. Simul. 181, 38--50 (2021; Zbl 07318208) Full Text: DOI
Jia, Jinhong; Wang, Hong; Zheng, Xiangcheng A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. (English) Zbl 07316833 Appl. Numer. Math. 163, 15-29 (2021). MSC: 65 PDF BibTeX XML Cite \textit{J. Jia} et al., Appl. Numer. Math. 163, 15--29 (2021; Zbl 07316833) Full Text: DOI
Lin, Fu-Rong; Qiu, Yi-Feng; She, Zi-Hang IRK-WSGD methods for space fractional diffusion equations. (English) Zbl 07316829 Appl. Numer. Math. 164, 222-244 (2021). MSC: 65F PDF BibTeX XML Cite \textit{F.-R. Lin} et al., Appl. Numer. Math. 164, 222--244 (2021; Zbl 07316829) Full Text: DOI
Uchaikin, V. V. Nonlocal turbulent diffusion models. (English. Russian original) Zbl 07315952 J. Math. Sci., New York 253, No. 4, 573-582 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 113-122 (2018). MSC: 76F25 76R50 PDF BibTeX XML Cite \textit{V. V. Uchaikin}, J. Math. Sci., New York 253, No. 4, 573--582 (2021; Zbl 07315952); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 113--122 (2018) Full Text: DOI
Didier, Gustavo; Kanamori, Shigeki; Sabzikar, Farzad On multivariate fractional random fields: tempering and operator-stable laws. (English) Zbl 07315345 J. Math. Anal. Appl. 495, No. 1, Article ID 124659, 41 p. (2021). MSC: 60 46 PDF BibTeX XML Cite \textit{G. Didier} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124659, 41 p. (2021; Zbl 07315345) Full Text: DOI
Markus Melenk, Jens; Rieder, Alexander \(hp\)-FEM for the fractional heat equation. (English) Zbl 07315156 IMA J. Numer. Anal. 41, No. 1, 412-454 (2021). MSC: 65M PDF BibTeX XML Cite \textit{J. Markus Melenk} and \textit{A. Rieder}, IMA J. Numer. Anal. 41, No. 1, 412--454 (2021; Zbl 07315156) Full Text: DOI
Dipierro, Serena; Pellacci, Benedetta; Valdinoci, Enrico; Verzini, Gianmaria Time-fractional equations with reaction terms: fundamental solutions and asymptotics. (English) Zbl 07314164 Discrete Contin. Dyn. Syst. 41, No. 1, 257-275 (2021). MSC: 35R11 35C15 35B40 35K57 35K08 26A33 PDF BibTeX XML Cite \textit{S. Dipierro} et al., Discrete Contin. Dyn. Syst. 41, No. 1, 257--275 (2021; Zbl 07314164) Full Text: DOI
Bohaienko, Vsevolod On the recurrent computation of fractional operator with Mittag-Leffler kernel. (English) Zbl 07311183 Appl. Numer. Math. 162, 137-149 (2021). MSC: 65M06 65N06 35R11 26A33 33E12 PDF BibTeX XML Cite \textit{V. Bohaienko}, Appl. Numer. Math. 162, 137--149 (2021; Zbl 07311183) Full Text: DOI
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M06 65M12 65M15 42C10 41A50 35R11 PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Zheng, Xiangcheng; Liu, Huan; Wang, Hong; Fu, Hongfei Optimal-order finite element approximations to variable-coefficient two-sided space-fractional advection-reaction-diffusion equations in three space dimensions. (English) Zbl 07310800 Appl. Numer. Math. 161, 1-12 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 65M06 35R11 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Numer. Math. 161, 1--12 (2021; Zbl 07310800) Full Text: DOI
Liu, Jun; Zhu, Chen; Chen, Yanping; Fu, Hongfei A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations. (English) Zbl 07310778 Appl. Numer. Math. 160, 331-348 (2021). MSC: 65 35K 35R 65M PDF BibTeX XML Cite \textit{J. Liu} et al., Appl. Numer. Math. 160, 331--348 (2021; Zbl 07310778) Full Text: DOI
Bhardwaj, Akanksha; Kumar, Alpesh A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. (English) Zbl 07310767 Appl. Numer. Math. 160, 146-165 (2021). MSC: 65M06 65N35 65M12 65D12 35R11 PDF BibTeX XML Cite \textit{A. Bhardwaj} and \textit{A. Kumar}, Appl. Numer. Math. 160, 146--165 (2021; Zbl 07310767) Full Text: DOI
Huang, Jianfei; Zhang, Jingna; Arshad, Sadia; Tang, Yifa A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. (English) Zbl 07310750 Appl. Numer. Math. 159, 159-173 (2021). MSC: 65M06 65M12 35R09 35R11 PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Numer. Math. 159, 159--173 (2021; Zbl 07310750) Full Text: DOI
Pham, Trieu Duong; Reissig, Michael Semilinear mixed problems in exterior domains for \(\sigma \)-evolution equations with friction and coefficients depending on spatial variables. (English) Zbl 07309695 J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021). MSC: 35L71 35L15 35R11 PDF BibTeX XML Cite \textit{T. D. Pham} and \textit{M. Reissig}, J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021; Zbl 07309695) Full Text: DOI
Lü, Shujuan; Xu, Tao; Feng, Zhaosheng A second-order numerical method for space-time variable-order diffusion equation. (English) Zbl 07309616 J. Comput. Appl. Math. 389, Article ID 113358, 17 p. (2021). MSC: 65M06 65M12 26A33 PDF BibTeX XML Cite \textit{S. Lü} et al., J. Comput. Appl. Math. 389, Article ID 113358, 17 p. (2021; Zbl 07309616) Full Text: DOI
Yamamoto, Masakazu; Sugiyama, Yuusuke Optimal estimates for far field asymptotics of solutions to the quasi-geostrophic equation. (English) Zbl 07308531 Proc. Am. Math. Soc. 149, No. 3, 1099-1110 (2021). MSC: 35Q35 35Q86 35R11 35B40 86A05 PDF BibTeX XML Cite \textit{M. Yamamoto} and \textit{Y. Sugiyama}, Proc. Am. Math. Soc. 149, No. 3, 1099--1110 (2021; Zbl 07308531) Full Text: DOI
Ding, Hengfei The development of higher-order numerical differential formulas of Caputo derivative and their applications (I). (English) Zbl 07308037 Comput. Math. Appl. 84, 203-223 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{H. Ding}, Comput. Math. Appl. 84, 203--223 (2021; Zbl 07308037) Full Text: DOI
Liu, Xinfei; Yang, Xiaoyuan Mixed finite element method for the nonlinear time-fractional stochastic fourth-order reaction-diffusion equation. (English) Zbl 07308027 Comput. Math. Appl. 84, 39-55 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{X. Liu} and \textit{X. Yang}, Comput. Math. Appl. 84, 39--55 (2021; Zbl 07308027) Full Text: DOI
Koley, Ujjwal; Ray, Deep; Sarkar, Tanmay Multilevel Monte Carlo finite difference methods for fractional conservation laws with random data. (English) Zbl 07307678 SIAM/ASA J. Uncertain. Quantif. 9, 65-105 (2021). MSC: 65M06 65C05 65M12 35L65 35R11 35R60 PDF BibTeX XML Cite \textit{U. Koley} et al., SIAM/ASA J. Uncertain. Quantif. 9, 65--105 (2021; Zbl 07307678) Full Text: DOI
Mansouri, D.; Bendoukha, S.; Abdelmalek, S.; Youkana, A. On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity. (English) Zbl 07305515 Appl. Anal. 100, No. 3, 675-694 (2021). MSC: 35R11 35K51 35K57 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Appl. Anal. 100, No. 3, 675--694 (2021; Zbl 07305515) Full Text: DOI
Carrer, J. A. M.; Solheid, B. S.; Trevelyan, J.; Seaid, M. A boundary element method formulation based on the Caputo derivative for the solution of the anomalous diffusion problem. (English) Zbl 07305266 Eng. Anal. Bound. Elem. 122, 132-144 (2021). MSC: 76 65 PDF BibTeX XML Cite \textit{J. A. M. Carrer} et al., Eng. Anal. Bound. Elem. 122, 132--144 (2021; Zbl 07305266) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Jia, Jinhong; Wang, Hong; Zheng, Xiangcheng A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis. (English) Zbl 07305200 J. Comput. Appl. Math. 388, Article ID 113234, 15 p. (2021). MSC: 65L60 34A08 65F10 PDF BibTeX XML Cite \textit{J. Jia} et al., J. Comput. Appl. Math. 388, Article ID 113234, 15 p. (2021; Zbl 07305200) Full Text: DOI
Wang, Fangyuan; Zhang, Zhongqiang; Zhou, Zhaojie A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. (English) Zbl 07305150 J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021). MSC: 49M41 49M25 49K20 49N60 65K10 35R11 35K57 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021; Zbl 07305150) Full Text: DOI
Bazhlekova, Emilia; Bazhlekov, Ivan Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. (English) Zbl 07305137 J. Comput. Appl. Math. 386, Article ID 113213, 19 p. (2021). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{E. Bazhlekova} and \textit{I. Bazhlekov}, J. Comput. Appl. Math. 386, Article ID 113213, 19 p. (2021; Zbl 07305137) Full Text: DOI
Ervin, V. J. Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. (English) Zbl 07303710 J. Differ. Equations 278, 294-325 (2021). MSC: 35R11 35B65 46E35 00A20 00A22 65A05 41A55 PDF BibTeX XML Cite \textit{V. J. Ervin}, J. Differ. Equations 278, 294--325 (2021; Zbl 07303710) Full Text: DOI
Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong; He, Yinnian Stability and error estimate of the operator splitting method for the phase field crystal equation. (English) Zbl 07301286 J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021). MSC: 65M70 65T50 65M12 35K57 35R11 74N05 35Q74 82D80 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021; Zbl 07301286) Full Text: DOI
Bernardin, C.; Gonçalves, P.; Jiménez-Oviedo, B. A microscopic model for a one parameter class of fractional Laplacians with Dirichlet boundary conditions. (English) Zbl 07298819 Arch. Ration. Mech. Anal. 239, No. 1, 1-48 (2021); correction ibid. 239, No. 1, 49-50 (2021). MSC: 35R11 35K57 35K20 35B40 82C22 35Q79 35D30 60K35 PDF BibTeX XML Cite \textit{C. Bernardin} et al., Arch. Ration. Mech. Anal. 239, No. 1, 1--48 (2021; Zbl 07298819) Full Text: DOI
Zheng, Xiangcheng; Wang, Hong; Fu, Hongfei Analysis of a physically-relevant variable-order time-fractional reaction-diffusion model with Mittag-Leffler kernel. (English) Zbl 1453.35185 Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021). MSC: 35R11 35K20 35K57 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021; Zbl 1453.35185) Full Text: DOI
Feng, Libo; Turner, Ian; Perré, Patrick; Burrage, Kevin An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media. (English) Zbl 1452.76227 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105454, 22 p. (2021). MSC: 76R50 76M20 26A33 PDF BibTeX XML Cite \textit{L. Feng} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105454, 22 p. (2021; Zbl 1452.76227) Full Text: DOI
Ducharne, Benjamin; Tsafack, P.; Tene Deffo, Y. A.; Zhang, B.; Sebald, G. Anomalous fractional magnetic field diffusion through cross-section of a massive toroidal ferromagnetic core. (English) Zbl 07274869 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105450, 12 p. (2021). MSC: 78A55 78A25 78M20 35Q60 35R11 PDF BibTeX XML Cite \textit{B. Ducharne} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105450, 12 p. (2021; Zbl 07274869) Full Text: DOI
Tan, Zhong; Xie, Minghong Global existence and blowup of solutions to semilinear fractional reaction-diffusion equation with singular potential. (English) Zbl 1451.35259 J. Math. Anal. Appl. 493, No. 2, Article ID 124548, 29 p. (2021). MSC: 35R11 35K57 35K67 35B44 PDF BibTeX XML Cite \textit{Z. Tan} and \textit{M. Xie}, J. Math. Anal. Appl. 493, No. 2, Article ID 124548, 29 p. (2021; Zbl 1451.35259) Full Text: DOI
Wei, Yabing; Lü, Shujuan; Chen, Hu; Zhao, Yanmin; Wang, Fenling Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes. (English) Zbl 1452.65254 Appl. Math. Lett. 111, Article ID 106604, 8 p. (2021). MSC: 65M60 65M22 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Wei} et al., Appl. Math. Lett. 111, Article ID 106604, 8 p. (2021; Zbl 1452.65254) Full Text: DOI
Manimaran, J.; Shangerganesh, L.; Debbouche, Amar Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy. (English) Zbl 1446.65116 J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021). MSC: 65M60 65N30 65M06 65M12 65M15 35R11 26A33 35B45 74H10 PDF BibTeX XML Cite \textit{J. Manimaran} et al., J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021; Zbl 1446.65116) Full Text: DOI
Namba, T.; Rybka, P.; Voller, V. R. Some comments on using fractional derivative operators in modeling non-local diffusion processes. (English) Zbl 1446.35252 J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021). MSC: 35R11 35K20 70H33 PDF BibTeX XML Cite \textit{T. Namba} et al., J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021; Zbl 1446.35252) Full Text: DOI
Hainaut, Donatien; Leonenko, Nikolai Option pricing in illiquid markets: a fractional jump-diffusion approach. (English) Zbl 1447.91174 J. Comput. Appl. Math. 381, Article ID 112995, 18 p. (2021). MSC: 91G20 26A33 60J74 PDF BibTeX XML Cite \textit{D. Hainaut} and \textit{N. Leonenko}, J. Comput. Appl. Math. 381, Article ID 112995, 18 p. (2021; Zbl 1447.91174) Full Text: DOI
Tanoh, Kouacou; N’zi, Modeste; Yodé, Armel Fabrice Large deviations and Berry-Esseen inequalities for estimators in nonhomogeneous diffusion driven by fractional Brownian motion. (English) Zbl 07330121 Random Oper. Stoch. Equ. 28, No. 3, 183-196 (2020). MSC: 62M05 62F12 60E15 60F10 60G22 60H10 60H07 60J60 PDF BibTeX XML Cite \textit{K. Tanoh} et al., Random Oper. Stoch. Equ. 28, No. 3, 183--196 (2020; Zbl 07330121) Full Text: DOI
Jin, Bangti; Li, Buyang; Zhou, Zhi Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint. (English) Zbl 07330023 IMA J. Numer. Anal. 40, No. 1, 377-404 (2020). MSC: 65 PDF BibTeX XML Cite \textit{B. Jin} et al., IMA J. Numer. Anal. 40, No. 1, 377--404 (2020; Zbl 07330023) Full Text: DOI
Pskhu, Arsen Nakhushev extremum principle for a class of integro-differential operators. (English) Zbl 07329883 Fract. Calc. Appl. Anal. 23, No. 6, 1712-1722 (2020). MSC: 26A33 26D10 26A24 PDF BibTeX XML Cite \textit{A. Pskhu}, Fract. Calc. Appl. Anal. 23, No. 6, 1712--1722 (2020; Zbl 07329883) Full Text: DOI
Slodička, Marian Uniqueness for an inverse source problem of determining a space-dependent source in a non-autonomous time-fractional diffusion equation. (English) Zbl 07329882 Fract. Calc. Appl. Anal. 23, No. 6, 1702-1711 (2020). MSC: 35R30 34K29 PDF BibTeX XML Cite \textit{M. Slodička}, Fract. Calc. Appl. Anal. 23, No. 6, 1702--1711 (2020; Zbl 07329882) Full Text: DOI
Janno, Jaan Determination of time-dependent sources and parameters of nonlocal diffusion and wave equations from final data. (English) Zbl 07329881 Fract. Calc. Appl. Anal. 23, No. 6, 1678-1701 (2020). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{J. Janno}, Fract. Calc. Appl. Anal. 23, No. 6, 1678--1701 (2020; Zbl 07329881) Full Text: DOI
Harizanov, Stanislav; Lazarov, Raytcho; Margenov, Svetozar A survey on numerical methods for spectral space-fractional diffusion problems. (English) Zbl 07329878 Fract. Calc. Appl. Anal. 23, No. 6, 1605-1646 (2020). MSC: 35R11 65N30 65N06 65F30 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Fract. Calc. Appl. Anal. 23, No. 6, 1605--1646 (2020; Zbl 07329878) Full Text: DOI
Lopushans’ka, H. P.; Lopushans’kyĭ, A. O. Regular solution of the inverse problem with integral condition for a time-fractional equation. (Ukrainian. English summary) Zbl 07329628 Bukovyn. Mat. Zh. 8, No. 2, 103-113 (2020). MSC: 80A23 35S10 PDF BibTeX XML Cite \textit{H. P. Lopushans'ka} and \textit{A. O. Lopushans'kyĭ}, Bukovyn. Mat. Zh. 8, No. 2, 103--113 (2020; Zbl 07329628) Full Text: DOI
Litovchenko, V. A. On the nature of a classical pseudodifferential equation. (Ukrainian. English summary) Zbl 07329626 Bukovyn. Mat. Zh. 8, No. 2, 83-92 (2020). MSC: 35R11 60G22 26A33 PDF BibTeX XML Cite \textit{V. A. Litovchenko}, Bukovyn. Mat. Zh. 8, No. 2, 83--92 (2020; Zbl 07329626) Full Text: DOI
Wu, Longyuan; Zhai, Shuying A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. (English) Zbl 07328859 Appl. Math. Comput. 387, Article ID 124564, 10 p. (2020). MSC: 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{L. Wu} and \textit{S. Zhai}, Appl. Math. Comput. 387, Article ID 124564, 10 p. (2020; Zbl 07328859) Full Text: DOI
Akhoundi, Naser \(2n\)-by-\(2n\) circulant preconditioner for a kind of spatial fractional diffusion equations. (English) Zbl 07326390 J. Math. Model. 8, No. 3, 207-218 (2020). MSC: 65F10 65F15 PDF BibTeX XML Cite \textit{N. Akhoundi}, J. Math. Model. 8, No. 3, 207--218 (2020; Zbl 07326390) Full Text: DOI
Khalouta, Ali; Kadem, Abdelouahab New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems. (English) Zbl 07325564 Rev. Colomb. Mat. 54, No. 1, 1-11 (2020). MSC: 35R11 26A33 74G10 34K28 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Rev. Colomb. Mat. 54, No. 1, 1--11 (2020; Zbl 07325564) Full Text: DOI
Ke, Rihuan; Ng, Michael K.; Wei, Ting Efficient preconditioning for time fractional diffusion inverse source problems. (English) Zbl 07324168 SIAM J. Matrix Anal. Appl. 41, No. 4, 1857-1888 (2020). MSC: 65F10 PDF BibTeX XML Cite \textit{R. Ke} et al., SIAM J. Matrix Anal. Appl. 41, No. 4, 1857--1888 (2020; Zbl 07324168) Full Text: DOI
Wang, Xiuping; Gao, Fuzheng; Liu, Yang; Sun, Zhengjia A weak Galerkin finite element method for high dimensional time-fractional diffusion equation. (English) Zbl 07323524 Appl. Math. Comput. 386, Article ID 125524, 9 p. (2020). MSC: 65M60 65N30 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Comput. 386, Article ID 125524, 9 p. (2020; Zbl 07323524) Full Text: DOI
Saw, Vijay; Kumar, Sushil Collocation method for time fractional diffusion equation based on the Chebyshev polynomials of second kind. (English) Zbl 07322741 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 117, 13 p. (2020). MSC: 65M70 35R11 65M06 PDF BibTeX XML Cite \textit{V. Saw} and \textit{S. Kumar}, Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 117, 13 p. (2020; Zbl 07322741) Full Text: DOI
Chen, Hao; Huang, Qiuyue Kronecker product based preconditioners for boundary value method discretizations of space fractional diffusion equations. (English) Zbl 07317991 Math. Comput. Simul. 170, 316-331 (2020). MSC: 65F 34A 65L PDF BibTeX XML Cite \textit{H. Chen} and \textit{Q. Huang}, Math. Comput. Simul. 170, 316--331 (2020; Zbl 07317991) Full Text: DOI
Mohamed, El Omari; Maroufy, Hamid El Nonparametric estimation for small fractional diffusion processes with random effects. (English) Zbl 07316803 Stochastic Anal. Appl. 38, No. 6, 1084-1101 (2020). MSC: 62G07 60J60 60G22 PDF BibTeX XML Cite \textit{E. O. Mohamed} and \textit{H. E. Maroufy}, Stochastic Anal. Appl. 38, No. 6, 1084--1101 (2020; Zbl 07316803) Full Text: DOI
Dozzi, Marco; Kolkovska, Ekaterina Todorova; López-Mimbela, José Alfredo Global and non-global solutions of a fractional reaction-diffusion equation perturbed by a fractional noise. (English) Zbl 07316797 Stochastic Anal. Appl. 38, No. 6, 959-978 (2020). MSC: 35R60 35R11 35K57 60H15 74H35 35B44 35B40 PDF BibTeX XML Cite \textit{M. Dozzi} et al., Stochastic Anal. Appl. 38, No. 6, 959--978 (2020; Zbl 07316797) Full Text: DOI
Yang, Fan; Wang, Ni; Li, Xiao-Xiao Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain. (English) Zbl 07315131 J. Appl. Anal. Comput. 10, No. 2, 514-529 (2020). MSC: 65M32 65M30 65J20 35R25 35R30 35R11 PDF BibTeX XML Cite \textit{F. Yang} et al., J. Appl. Anal. Comput. 10, No. 2, 514--529 (2020; Zbl 07315131) Full Text: DOI
Zhang, Huiqin; Mo, Yan; Wang, Zhibo A high order difference method for fractional sub-diffusion equations with the spatially variable coefficients under periodic boundary conditions. (English) Zbl 07315128 J. Appl. Anal. Comput. 10, No. 2, 474-485 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Appl. Anal. Comput. 10, No. 2, 474--485 (2020; Zbl 07315128) Full Text: DOI
Floridia, Giuseppe; Yamamoto, Masahiro Backward problems in time for fractional diffusion-wave equation. (English) Zbl 07305930 Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020). MSC: 35Q99 35R11 35A30 35A01 35A02 PDF BibTeX XML Cite \textit{G. Floridia} and \textit{M. Yamamoto}, Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020; Zbl 07305930) Full Text: DOI
Kumar, Hemant; RAi, Surya Kant Multiple fractional diffusions via multivariable \(H\)-function. (English) Zbl 07303936 Jñānābha 50, No. 1, 253-264 (2020). MSC: 26A33 33C20 33C60 33E12 33E20 33E30 44A15 60G18 60J60 PDF BibTeX XML Cite \textit{H. Kumar} and \textit{S. K. RAi}, Jñānābha 50, No. 1, 253--264 (2020; Zbl 07303936) Full Text: Link
Bairwa, R. K.; Kumar, Ajay; Singh, Karan Analytical solutions for time-fractional Cauchy reaction-diffusion equations using iterative Laplace transform method. (English) Zbl 07303932 Jñānābha 50, No. 1, 207-217 (2020). MSC: 35A20 35A22 34A08 33E12 PDF BibTeX XML Cite \textit{R. K. Bairwa} et al., Jñānābha 50, No. 1, 207--217 (2020; Zbl 07303932) Full Text: Link
Zhang, Hui; Jiang, Xiaoyun; Zeng, Fanhai; Karniadakis, George Em A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations. (English) Zbl 1453.65370 J. Comput. Phys. 405, Article ID 109141, 17 p. (2020). MSC: 65M70 65M15 35R11 65M12 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Comput. Phys. 405, Article ID 109141, 17 p. (2020; Zbl 1453.65370) Full Text: DOI
Bai, Zhong-Zhi; Lu, Kang-Ya Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations. (English) Zbl 1453.65062 J. Comput. Phys. 404, Article ID 109117, 13 p. (2020). MSC: 65F08 15B05 35R11 65M06 65M22 PDF BibTeX XML Cite \textit{Z.-Z. Bai} and \textit{K.-Y. Lu}, J. Comput. Phys. 404, Article ID 109117, 13 p. (2020; Zbl 1453.65062) Full Text: DOI
Lischke, Anna; Pang, Guofei; Gulian, Mamikon; Song, Fangying; Glusa, Christian; Zheng, Xiaoning; Mao, Zhiping; Cai, Wei; Meerschaert, Mark M.; Ainsworth, Mark; Karniadakis, George Em What is the fractional Laplacian? A comparative review with new results. (English) Zbl 1453.35179 J. Comput. Phys. 404, Article ID 109009, 62 p. (2020). MSC: 35R11 60G51 35A01 35A02 65N30 65C05 35-02 65-02 PDF BibTeX XML Cite \textit{A. Lischke} et al., J. Comput. Phys. 404, Article ID 109009, 62 p. (2020; Zbl 1453.35179) Full Text: DOI
Baudoin, Fabrice; Feng, Qi; Ouyang, Cheng Density of the signature process of fBm. (English) Zbl 07301834 Trans. Am. Math. Soc. 373, No. 12, 8583-8610 (2020). MSC: 60H10 60D05 58J65 60H07 PDF BibTeX XML Cite \textit{F. Baudoin} et al., Trans. Am. Math. Soc. 373, No. 12, 8583--8610 (2020; Zbl 07301834) Full Text: DOI
Lototsky, S. V.; Rozovsky, B. L. Classical and generalized solutions of fractional stochastic differential equations. (English) Zbl 07298957 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 761-786 (2020). MSC: 60H15 60H10 60H40 34A08 35R15 35R11 35R60 PDF BibTeX XML Cite \textit{S. V. Lototsky} and \textit{B. L. Rozovsky}, Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 761--786 (2020; Zbl 07298957) Full Text: DOI
Qin, Xinqiang; Peng, Dayao; Hu, Gang Implicit radial point interpolation method for nonlinear space fractional advection-diffusion equations. (English) Zbl 07297924 Rocky Mt. J. Math. 50, No. 6, 2199-2212 (2020). MSC: 65M22 65M70 65D32 35R11 PDF BibTeX XML Cite \textit{X. Qin} et al., Rocky Mt. J. Math. 50, No. 6, 2199--2212 (2020; Zbl 07297924) Full Text: DOI Euclid
Yang, Yue; Wang, Yongmao Asian option pricing under sub-fractional Brownian motion with jump. (Chinese. English summary) Zbl 07296052 Math. Pract. Theory 50, No. 13, 131-140 (2020). MSC: 91G20 60G22 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{Y. Wang}, Math. Pract. Theory 50, No. 13, 131--140 (2020; Zbl 07296052)
Chan, Hardy; González, María Del Mar; Huang, Yanghong; Mainini, Edoardo; Volzone, Bruno Uniqueness of entire ground states for the fractional plasma problem. (English) Zbl 1455.35280 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 195, 41 p. (2020). MSC: 35R11 35B08 35J61 49K20 92C17 PDF BibTeX XML Cite \textit{H. Chan} et al., Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 195, 41 p. (2020; Zbl 1455.35280) Full Text: DOI
Ahmad, Imtiaz; Siraj-ul-Islam; Mehnaz; Zaman, Sakhi Local meshless differential quadrature collocation method for time-fractional PDEs. (English) Zbl 1451.65166 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641-2654 (2020). MSC: 65M99 35K55 35K57 35R11 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641--2654 (2020; Zbl 1451.65166) Full Text: DOI
Majeed, Abdul; Kamran, Mohsin; Rafique, Muhammad An approximation to the solution of time fractional modified Burgers’ equation using extended cubic B-spline method. (English) Zbl 07291002 Comput. Appl. Math. 39, No. 4, Paper No. 257, 21 p. (2020). MSC: 65D07 65M06 65N22 PDF BibTeX XML Cite \textit{A. Majeed} et al., Comput. Appl. Math. 39, No. 4, Paper No. 257, 21 p. (2020; Zbl 07291002) Full Text: DOI
Jia, Jinhong; Zheng, Xiangcheng; Fu, Hongfei; Dai, Pingfei; Wang, Hong A fast method for variable-order space-fractional diffusion equations. (English) Zbl 07290727 Numer. Algorithms 85, No. 4, 1519-1540 (2020). MSC: 65M70 65R20 PDF BibTeX XML Cite \textit{J. Jia} et al., Numer. Algorithms 85, No. 4, 1519--1540 (2020; Zbl 07290727) Full Text: DOI
Jiang, Suzhen; Wu, Yujiang An inverse space-dependent source problem for a multi-term time fractional diffusion equation. (English) Zbl 1455.35300 J. Math. Phys. 61, No. 12, 121502, 16 p. (2020). MSC: 35R30 35R11 35K57 PDF BibTeX XML Cite \textit{S. Jiang} and \textit{Y. Wu}, J. Math. Phys. 61, No. 12, 121502, 16 p. (2020; Zbl 1455.35300) Full Text: DOI
Moroz, L. I.; Maslovskaya, A. G. Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme. (Russian. English summary) Zbl 07288921 Mat. Model. 32, No. 10, 62-76 (2020). MSC: 60-08 60K50 65C20 PDF BibTeX XML Cite \textit{L. I. Moroz} and \textit{A. G. Maslovskaya}, Mat. Model. 32, No. 10, 62--76 (2020; Zbl 07288921) Full Text: DOI MNR
Ahmad, Bashir; Alsaedi, Ahmed; Berbiche, Mohamed; Kirane, Mokhtar Existence of global solutions and blow-up of solutions for coupled systems of fractional diffusion equations. (English) Zbl 1454.35408 Electron. J. Differ. Equ. 2020, Paper No. 110, 28 p. (2020). MSC: 35R11 35R09 35K45 35B44 45K05 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Electron. J. Differ. Equ. 2020, Paper No. 110, 28 p. (2020; Zbl 1454.35408) Full Text: Link
Lv, Guangying; Wei, Jinlong Blowup solutions for stochastic parabolic equations. (English) Zbl 1454.35421 Stat. Probab. Lett. 166, Article ID 108876, 6 p. (2020). MSC: 35R60 35B44 35K20 60H15 60H40 35B51 PDF BibTeX XML Cite \textit{G. Lv} and \textit{J. Wei}, Stat. Probab. Lett. 166, Article ID 108876, 6 p. (2020; Zbl 1454.35421) Full Text: DOI
Ge, Fudong; Chen, Yangquan Distributed event-triggered output feedback control for semilinear time fractional diffusion systems. (English) Zbl 1454.93160 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume II. Cham: Springer. 245-253 (2020). MSC: 93C65 93B52 93D05 93C20 35R11 93C10 PDF BibTeX XML Cite \textit{F. Ge} and \textit{Y. Chen}, in: Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume II. Cham: Springer. 245--253 (2020; Zbl 1454.93160) Full Text: DOI
Fa, Kwok Sau Fractional oscillator noise and its applications. (English) Zbl 1451.34008 Int. J. Mod. Phys. B 34, No. 26, Article ID 2050234, 12 p. (2020). MSC: 34A08 34C15 34F05 PDF BibTeX XML Cite \textit{K. S. Fa}, Int. J. Mod. Phys. B 34, No. 26, Article ID 2050234, 12 p. (2020; Zbl 1451.34008) Full Text: DOI
Bulavatsky, V. M.; Bohaienko, V. O. Some boundary-value problems of fractional-differential mobile-immobile migration dynamics in a profile filtration flow. (English. Russian original) Zbl 07285097 Cybern. Syst. Anal. 56, No. 3, 410-425 (2020); translation from Kibern. Sist. Anal. 2020, No. 3, 80-96 (2020). MSC: 76S05 76R50 26A33 86A05 PDF BibTeX XML Cite \textit{V. M. Bulavatsky} and \textit{V. O. Bohaienko}, Cybern. Syst. Anal. 56, No. 3, 410--425 (2020; Zbl 07285097); translation from Kibern. Sist. Anal. 2020, No. 3, 80--96 (2020) Full Text: DOI
Zheng, Xiangcheng; Ervin, Vincent J.; Wang, Hong Numerical approximations for the variable coefficient fractional diffusion equations with non-smooth data. (English) Zbl 1451.65209 Comput. Methods Appl. Math. 20, No. 3, 573-589 (2020). MSC: 65N30 35B65 41A10 33C45 PDF BibTeX XML Cite \textit{X. Zheng} et al., Comput. Methods Appl. Math. 20, No. 3, 573--589 (2020; Zbl 1451.65209) Full Text: DOI
Shvydkoy, Roman; Tadmor, Eitan Topologically based fractional diffusion and emergent dynamics with short-range interactions. (English) Zbl 1453.92371 SIAM J. Math. Anal. 52, No. 6, 5792-5839 (2020). MSC: 92D50 35Q92 PDF BibTeX XML Cite \textit{R. Shvydkoy} and \textit{E. Tadmor}, SIAM J. Math. Anal. 52, No. 6, 5792--5839 (2020; Zbl 1453.92371) Full Text: DOI
Kumar, Sachin; Aguilar, José Francisco Gómez; Pandey, Prashant Numerical solutions for the reaction-diffusion, diffusion-wave, and Cattaneo equations using a new operational matrix for the Caputo-Fabrizio derivative. (English) Zbl 07279006 Math. Methods Appl. Sci. 43, No. 15, 8595-8607 (2020). Reviewer: Dana Černá (Liberec) MSC: 65M70 35K57 35R11 26A33 35Q79 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 15, 8595--8607 (2020; Zbl 07279006) Full Text: DOI