Tvyordyj, D. A. Hereditary Riccati equation with fractional derivative of variable order. (English. Russian original) Zbl 07315951 J. Math. Sci., New York 253, No. 4, 564-572 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 105-112 (2018). MSC: 65L 34A08 PDF BibTeX XML Cite \textit{D. A. Tvyordyj}, J. Math. Sci., New York 253, No. 4, 564--572 (2021; Zbl 07315951); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 105--112 (2018) Full Text: DOI
Parovik, R. I. On a finite-difference scheme for an hereditary oscillatory equation. (English. Russian original) Zbl 07315949 J. Math. Sci., New York 253, No. 4, 547-557 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 89-98 (2018). MSC: 37M05 34A08 PDF BibTeX XML Cite \textit{R. I. Parovik}, J. Math. Sci., New York 253, No. 4, 547--557 (2021; Zbl 07315949); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 89--98 (2018) Full Text: DOI
Brandibur, Oana; Kaslik, Eva Stability analysis of multi-term fractional-differential equations with three fractional derivatives. (English) Zbl 07315641 J. Math. Anal. Appl. 495, No. 2, Article ID 124751, 23 p. (2021). MSC: 34A08 34D20 PDF BibTeX XML Cite \textit{O. Brandibur} and \textit{E. Kaslik}, J. Math. Anal. Appl. 495, No. 2, Article ID 124751, 23 p. (2021; Zbl 07315641) Full Text: DOI
Le, Phuong Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order. (English) Zbl 07314924 Discrete Contin. Dyn. Syst. 41, No. 4, 1605-1626 (2021). MSC: 35R11 35J30 35B06 35B53 35A02 PDF BibTeX XML Cite \textit{P. Le}, Discrete Contin. Dyn. Syst. 41, No. 4, 1605--1626 (2021; Zbl 07314924) Full Text: DOI
Kamenskii, Mikhail; Petrosyan, Garik; Wen, Ching-Feng An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space. (English) Zbl 07312312 J. Nonlinear Var. Anal. 5, No. 1, 155-177 (2021). MSC: 47 46 PDF BibTeX XML Cite \textit{M. Kamenskii} et al., J. Nonlinear Var. Anal. 5, No. 1, 155--177 (2021; Zbl 07312312) Full Text: DOI
Yuttanan, Boonrod; Razzaghi, Mohsen; Vo, Thieu N. A numerical method based on fractional-order generalized Taylor wavelets for solving distributed-order fractional partial differential equations. (English) Zbl 07310779 Appl. Numer. Math. 160, 349-367 (2021). MSC: 35R 65M PDF BibTeX XML Cite \textit{B. Yuttanan} et al., Appl. Numer. Math. 160, 349--367 (2021; Zbl 07310779) Full Text: DOI
Jong, KumSong; Choi, HuiChol; Jang, KyongJun; Pak, SunAe A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method. (English) Zbl 07310777 Appl. Numer. Math. 160, 313-330 (2021). MSC: 65L PDF BibTeX XML Cite \textit{K. Jong} et al., Appl. Numer. Math. 160, 313--330 (2021; Zbl 07310777) Full Text: DOI
Zhou, Yong; He, Jia Wei Well-posedness and regularity for fractional damped wave equations. (English) Zbl 07308740 Monatsh. Math. 194, No. 2, 425-458 (2021). MSC: 35L05 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Monatsh. Math. 194, No. 2, 425--458 (2021; Zbl 07308740) Full Text: DOI
Yamamoto, Masakazu; Sugiyama, Yuusuke Optimal estimates for far field asymptotics of solutions to the quasi-geostrophic equation. (English) Zbl 07308531 Proc. Am. Math. Soc. 149, No. 3, 1099-1110 (2021). MSC: 35Q35 35R11 35B40 86A05 PDF BibTeX XML Cite \textit{M. Yamamoto} and \textit{Y. Sugiyama}, Proc. Am. Math. Soc. 149, No. 3, 1099--1110 (2021; Zbl 07308531) Full Text: DOI
Koley, Ujjwal; Ray, Deep; Sarkar, Tanmay Multilevel Monte Carlo finite difference methods for fractional conservation laws with random data. (English) Zbl 07307678 SIAM/ASA J. Uncertain. Quantif. 9, 65-105 (2021). MSC: 65M06 65C05 65M12 35L65 35R11 35R60 PDF BibTeX XML Cite \textit{U. Koley} et al., SIAM/ASA J. Uncertain. Quantif. 9, 65--105 (2021; Zbl 07307678) Full Text: DOI
Yang, Changqing; Hou, Jianhua Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations. (English) Zbl 07307381 Numer. Algorithms 86, No. 3, 1089-1108 (2021). MSC: 65L03 34K37 45D05 65R20 PDF BibTeX XML Cite \textit{C. Yang} and \textit{J. Hou}, Numer. Algorithms 86, No. 3, 1089--1108 (2021; Zbl 07307381) Full Text: DOI
Du, Rui; Wang, Yibo Lattice BGK model for time-fractional incompressible Navier-Stokes equations. (English) Zbl 07307178 Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021). MSC: 65M75 76M28 76D05 76P05 35R11 35Q20 35Q35 PDF BibTeX XML Cite \textit{R. Du} and \textit{Y. Wang}, Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021; Zbl 07307178) Full Text: DOI
Xie, Minghong; Tan, Zhong; Wu, Zhonger Local existence and uniqueness of weak solutions to fractional pseudo-parabolic equation with singular potential. (English) Zbl 07307172 Appl. Math. Lett. 114, Article ID 106898, 10 p. (2021). MSC: 35R11 35K70 35D30 PDF BibTeX XML Cite \textit{M. Xie} et al., Appl. Math. Lett. 114, Article ID 106898, 10 p. (2021; Zbl 07307172) Full Text: DOI
Musina, Roberta; Nazarov, Alexander I. Sobolev inequalities for fractional Neumann Laplacians on half spaces. (English) Zbl 07306554 Adv. Calc. Var. 14, No. 1, 127-145 (2021). MSC: 35J05 35R11 47A63 35A23 PDF BibTeX XML Cite \textit{R. Musina} and \textit{A. I. Nazarov}, Adv. Calc. Var. 14, No. 1, 127--145 (2021; Zbl 07306554) Full Text: DOI
Jia, Jinhong; Wang, Hong; Zheng, Xiangcheng A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis. (English) Zbl 07305200 J. Comput. Appl. Math. 388, Article ID 113234, 15 p. (2021). MSC: 65L60 34A08 65F10 PDF BibTeX XML Cite \textit{J. Jia} et al., J. Comput. Appl. Math. 388, Article ID 113234, 15 p. (2021; Zbl 07305200) Full Text: DOI
Lahrouz, Aadil; Hajjami, Riane; El Jarroudi, Mustapha; Settati, Adel Mittag-Leffler stability and bifurcation of a nonlinear fractional model with relapse. (English) Zbl 07305158 J. Comput. Appl. Math. 386, Article ID 113247, 30 p. (2021). MSC: 34C60 34K60 34D20 34D05 34K20 34K18 34K13 92D30 PDF BibTeX XML Cite \textit{A. Lahrouz} et al., J. Comput. Appl. Math. 386, Article ID 113247, 30 p. (2021; Zbl 07305158) Full Text: DOI
Wang, Fangyuan; Zhang, Zhongqiang; Zhou, Zhaojie A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. (English) Zbl 07305150 J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021). MSC: 49M41 49M25 49K20 49N60 65K10 35R11 35K57 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021; Zbl 07305150) Full Text: DOI
Bazhlekova, Emilia; Bazhlekov, Ivan Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. (English) Zbl 07305137 J. Comput. Appl. Math. 386, Article ID 113213, 19 p. (2021). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{E. Bazhlekova} and \textit{I. Bazhlekov}, J. Comput. Appl. Math. 386, Article ID 113213, 19 p. (2021; Zbl 07305137) Full Text: DOI
Shahnazi-Pour, A.; Moghaddam, B. Parsa; Babaei, A. Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical systems driven by fractional Brownian motion. (English) Zbl 07305136 J. Comput. Appl. Math. 386, Article ID 113210, 14 p. (2021). MSC: 60 26A33 34A08 60H10 62L20 PDF BibTeX XML Cite \textit{A. Shahnazi-Pour} et al., J. Comput. Appl. Math. 386, Article ID 113210, 14 p. (2021; Zbl 07305136) Full Text: DOI
Mahor, Teekam Chand; Mishra, Rajshree; Jain, Renu Analytical solutions of linear fractional partial differential equations using fractional Fourier transform. (English) Zbl 07305124 J. Comput. Appl. Math. 385, Article ID 113202, 9 p. (2021). MSC: 42A38 35R11 33E12 26A33 PDF BibTeX XML Cite \textit{T. C. Mahor} et al., J. Comput. Appl. Math. 385, Article ID 113202, 9 p. (2021; Zbl 07305124) Full Text: DOI
Alsuyuti, M. M.; Doha, E. H.; Ezz-Eldien, S. S.; Youssef, I. K. Spectral Galerkin schemes for a class of multi-order fractional pantograph equations. (English) Zbl 07305056 J. Comput. Appl. Math. 384, Article ID 113157, 21 p. (2021). MSC: 65M70 65N30 65M12 65M15 35C10 42C10 35R11 PDF BibTeX XML Cite \textit{M. M. Alsuyuti} et al., J. Comput. Appl. Math. 384, Article ID 113157, 21 p. (2021; Zbl 07305056) Full Text: DOI
Ervin, V. J. Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. (English) Zbl 07303710 J. Differ. Equations 278, 294-325 (2021). MSC: 35R11 35B65 46E35 00A20 00A22 65A05 41A55 PDF BibTeX XML Cite \textit{V. J. Ervin}, J. Differ. Equations 278, 294--325 (2021; Zbl 07303710) Full Text: DOI
Prakasa Rao, B. L. S. Nonparametric estimation of trend for stochastic differential equations driven by fractional Levy process. (English) Zbl 07302995 J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021). MSC: 62G07 62M09 60G15 60G22 60G65 60H15 PDF BibTeX XML Cite \textit{B. L. S. Prakasa Rao}, J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021; Zbl 07302995) Full Text: DOI
Patil, Jayashree; Hardan, Basel; Abdo, Mohammed S.; Chaudhari, Archana; Bachhav, Amol Generalized fractional differential equations by using a fixed point theorem for generalized contractive type. (English) Zbl 07302973 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 77-88 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{J. Patil} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 77--88 (2021; Zbl 07302973) Full Text: Link
Caballero, Josefa; Harjani, J.; Sadarangani, K. Existence and uniqueness of positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. (English) Zbl 07302474 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021). MSC: 34A08 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{J. Caballero} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021; Zbl 07302474) Full Text: DOI
Majdoub, Mohamed; Mliki, Ezzedine Well-posedness for Hardy-Hénon parabolic equations with fractional Brownian noise. (English) Zbl 07301482 Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021). Reviewer: Manil T. Mohan (Roorkee) MSC: 60H15 60H30 35R60 35K05 60G22 PDF BibTeX XML Cite \textit{M. Majdoub} and \textit{E. Mliki}, Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021; Zbl 07301482) Full Text: DOI
Darzi, Rahmat; Alvan, Meysam; Mahmoodi, Amin New approach on the solutions of nonlinear \(q\)-hybrid integro-differential equations. (English) Zbl 07301481 Anal. Math. Phys. 11, No. 1, Paper No. 19, 15 p. (2021). MSC: 45Jxx 47Gxx PDF BibTeX XML Cite \textit{R. Darzi} et al., Anal. Math. Phys. 11, No. 1, Paper No. 19, 15 p. (2021; Zbl 07301481) Full Text: DOI
Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong; He, Yinnian Stability and error estimate of the operator splitting method for the phase field crystal equation. (English) Zbl 07301286 J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021). MSC: 65M70 65T50 65M12 35K57 35R11 74N05 35Q74 82D80 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021; Zbl 07301286) Full Text: DOI
Liu, Jian-Gen; Yang, Xiao-Jun; Feng, Yi-Ying; Cui, Ping; Geng, Lu-Lu On integrability of the higher dimensional time fractional KdV-type equation. (English) Zbl 07299633 J. Geom. Phys. 160, Article ID 104000, 16 p. (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 37K10 26A33 35Q53 35R11 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., J. Geom. Phys. 160, Article ID 104000, 16 p. (2021; Zbl 07299633) Full Text: DOI
Lu, Ziqiang; Zhu, Yuanguo; Xu, Qinqin Asymptotic stability of fractional neutral stochastic systems with variable delays. (English) Zbl 07299591 Eur. J. Control 57, 119-124 (2021). MSC: 93D20 93E15 93E03 93C15 26A33 93C43 PDF BibTeX XML Cite \textit{Z. Lu} et al., Eur. J. Control 57, 119--124 (2021; Zbl 07299591) Full Text: DOI
Kassymov, Aidyn; Torebek, Berikbol T. Lyapunov-type inequalities for a nonlinear fractional boundary value problem. (English) Zbl 07299285 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 15, 9 p. (2021). MSC: 35R11 35A23 26D10 PDF BibTeX XML Cite \textit{A. Kassymov} and \textit{B. T. Torebek}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 15, 9 p. (2021; Zbl 07299285) Full Text: DOI
Do, Quan H.; Ngo, Hoa T. B.; Razzaghi, Mohsen A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations. (English) Zbl 07299009 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105597, 16 p. (2021). MSC: 65M70 34A08 35R11 41A50 65T60 PDF BibTeX XML Cite \textit{Q. H. Do} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105597, 16 p. (2021; Zbl 07299009) Full Text: DOI
Cao, Daomin; Jia, Huifang; Luo, Xiao Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. (English) Zbl 07297749 J. Differ. Equations 276, 228-263 (2021). MSC: 35J61 35R11 35Q55 35Q40 35B35 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 276, 228--263 (2021; Zbl 07297749) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07296638 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 07296638) Full Text: DOI
Kosunalp, Hatice Yalman; Gülsu, Mustafa Operational matrix by Hermite polynomials for solving nonlinear Riccati differential equations. (English) Zbl 07293306 Int. J. Math. Comput. Sci. 16, No. 2, 525-536 (2021). MSC: 65L05 34A08 PDF BibTeX XML Cite \textit{H. Y. Kosunalp} and \textit{M. Gülsu}, Int. J. Math. Comput. Sci. 16, No. 2, 525--536 (2021; Zbl 07293306) Full Text: Link
Li, Linyan; Shu, Ji; Bai, Qianqian; Li, Hui Asymptotic behavior of fractional stochastic heat equations in materials with memory. (English) Zbl 07291038 Appl. Anal. 100, No. 1, 145-166 (2021). MSC: 37L55 37L65 37L30 35R60 60H15 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Anal. 100, No. 1, 145--166 (2021; Zbl 07291038) Full Text: DOI
Ahmadova, Arzu; Mahmudov, Nazim I. Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations. (English) Zbl 07290499 Stat. Probab. Lett. 168, Article ID 108949, 6 p. (2021). MSC: 34A08 34F05 34A09 34D10 60J65 PDF BibTeX XML Cite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, Stat. Probab. Lett. 168, Article ID 108949, 6 p. (2021; Zbl 07290499) Full Text: DOI
Dong, Hongjie; Kim, Doyoon An approach for weighted mixed-norm estimates for parabolic equations with local and non-local time derivatives. (English) Zbl 07289457 Adv. Math. 377, Article ID 107494, 45 p. (2021). MSC: 35R11 35K PDF BibTeX XML Cite \textit{H. Dong} and \textit{D. Kim}, Adv. Math. 377, Article ID 107494, 45 p. (2021; Zbl 07289457) Full Text: DOI
Cunha, Alysson; Pastor, Ademir Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces. (English) Zbl 07289125 J. Differ. Equations 274, 1067-1114 (2021). MSC: 35B60 35G25 35A01 35B60 35Q53 35R11 PDF BibTeX XML Cite \textit{A. Cunha} and \textit{A. Pastor}, J. Differ. Equations 274, 1067--1114 (2021; Zbl 07289125) Full Text: DOI
Cen, Dakang; Wang, Zhibo; Mo, Yan Second order difference schemes for time-fractional KdV-Burgers’ equation with initial singularity. (English) Zbl 1453.65210 Appl. Math. Lett. 112, Article ID 106829, 7 p. (2021). MSC: 65M06 65N06 65M12 35R11 26A33 35Q53 PDF BibTeX XML Cite \textit{D. Cen} et al., Appl. Math. Lett. 112, Article ID 106829, 7 p. (2021; Zbl 1453.65210) Full Text: DOI
Zheng, Xiangcheng; Wang, Hong; Fu, Hongfei Analysis of a physically-relevant variable-order time-fractional reaction-diffusion model with Mittag-Leffler kernel. (English) Zbl 1453.35185 Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021). MSC: 35R11 35K20 35K57 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021; Zbl 1453.35185) Full Text: DOI
Lin, Ji; Feng, Wenjie; Reutskiy, Sergiy; Xu, Haifeng; He, Yongjun A new semi-analytical method for solving a class of time fractional partial differential equations with variable coefficients. (English) Zbl 07281292 Appl. Math. Lett. 112, Article ID 106712, 8 p. (2021). Reviewer: Hendrik Ranocha (Münster) MSC: 65M70 65N25 65L60 35R11 34A08 PDF BibTeX XML Cite \textit{J. Lin} et al., Appl. Math. Lett. 112, Article ID 106712, 8 p. (2021; Zbl 07281292) Full Text: DOI
Wang, Pengde Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg-Landau equation with fractional Laplacian in unbounded domain. (English) Zbl 1453.65365 Appl. Math. Lett. 112, Article ID 106710, 7 p. (2021). MSC: 65M70 65M60 65N35 65M06 35R11 35Q56 PDF BibTeX XML Cite \textit{P. Wang}, Appl. Math. Lett. 112, Article ID 106710, 7 p. (2021; Zbl 1453.65365) Full Text: DOI
Liu, Li; Dong, Qixiang; Li, Gang Exact solutions and Hyers-Ulam stability for fractional oscillation equations with pure delay. (English) Zbl 07281283 Appl. Math. Lett. 112, Article ID 106666, 7 p. (2021). MSC: 34K37 34K06 34K27 PDF BibTeX XML Cite \textit{L. Liu} et al., Appl. Math. Lett. 112, Article ID 106666, 7 p. (2021; Zbl 07281283) Full Text: DOI
Feng, Xiaojing Nontrivial solution for Schrödinger-Poisson equations involving the fractional Laplacian with critical exponent. (English) Zbl 07273579 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021). MSC: 35J60 35R11 35B33 35A15 35A01 PDF BibTeX XML Cite \textit{X. Feng}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021; Zbl 07273579) Full Text: DOI
Kopteva, Natalia Error analysis of an \(L2\)-type method on graded meshes for a fractional-order parabolic problem. (English) Zbl 1452.65237 Math. Comput. 90, No. 327, 19-40 (2021). MSC: 65M60 65M22 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{N. Kopteva}, Math. Comput. 90, No. 327, 19--40 (2021; Zbl 1452.65237) Full Text: DOI
Liu, Liguang; Yue, Chengjun; Zhang, Lunchuan Restricting Riesz-logarithmic-Besov potentials. (English) Zbl 1452.31009 J. Math. Anal. Appl. 493, No. 2, Article ID 124572, 18 p. (2021). MSC: 31B15 35R11 PDF BibTeX XML Cite \textit{L. Liu} et al., J. Math. Anal. Appl. 493, No. 2, Article ID 124572, 18 p. (2021; Zbl 1452.31009) Full Text: DOI
Zhang, Tie; Sheng, Ying The \(H^1\)-error analysis of the finite element method for solving the fractional diffusion equation. (English) Zbl 1452.65263 J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Y. Sheng}, J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021; Zbl 1452.65263) Full Text: DOI
Dai, Xinjie; Xiao, Aiguo A note on Euler method for the overdamped generalized Langevin equation with fractional noise. (English) Zbl 1450.65002 Appl. Math. Lett. 111, Article ID 106669, 6 p. (2021). MSC: 65C30 65R20 35R11 60G22 60H15 PDF BibTeX XML Cite \textit{X. Dai} and \textit{A. Xiao}, Appl. Math. Lett. 111, Article ID 106669, 6 p. (2021; Zbl 1450.65002) Full Text: DOI
Binhua, Feng; Chen, Ruipeng; Liu, Jiayin Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation. (English) Zbl 1447.35291 Adv. Nonlinear Anal. 10, 311-330 (2021). MSC: 35Q55 35J10 35B44 35B35 35R11 26A33 PDF BibTeX XML Cite \textit{F. Binhua} et al., Adv. Nonlinear Anal. 10, 311--330 (2021; Zbl 1447.35291) Full Text: DOI
Manimaran, J.; Shangerganesh, L.; Debbouche, Amar Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy. (English) Zbl 1446.65116 J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021). MSC: 65M60 65N30 65M06 65M12 65M15 35R11 26A33 35B45 74H10 PDF BibTeX XML Cite \textit{J. Manimaran} et al., J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021; Zbl 1446.65116) Full Text: DOI
Tamilalagan, P.; Karthiga, S.; Manivannan, P. Dynamics of fractional order HIV infection model with antibody and cytotoxic t-lymphocyte immune responses. (English) Zbl 1450.34035 J. Comput. Appl. Math. 382, Article ID 113064, 9 p. (2021). MSC: 34C60 92C60 34A08 34C05 34D05 34D20 PDF BibTeX XML Cite \textit{P. Tamilalagan} et al., J. Comput. Appl. Math. 382, Article ID 113064, 9 p. (2021; Zbl 1450.34035) Full Text: DOI
Gracia, José Luis; Stynes, Martin A finite difference method for an initial-boundary value problem with a Riemann-Liouville-Caputo spatial fractional derivative. (English) Zbl 1448.65101 J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{J. L. Gracia} and \textit{M. Stynes}, J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021; Zbl 1448.65101) Full Text: DOI
Abdellaoui, Boumediene; Fernández, Antonio J. Nonlinear fractional Laplacian problems with nonlocal ‘gradient terms’. (English) Zbl 07316353 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2682-2718 (2020). MSC: 35B65 35J62 35R09 47G20 PDF BibTeX XML Cite \textit{B. Abdellaoui} and \textit{A. J. Fernández}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2682--2718 (2020; Zbl 07316353) Full Text: DOI
Yang, Fan; Wang, Ni; Li, Xiao-Xiao Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain. (English) Zbl 07315131 J. Appl. Anal. Comput. 10, No. 2, 514-529 (2020). MSC: 65M32 65M30 65J20 35R25 35R30 35R11 PDF BibTeX XML Cite \textit{F. Yang} et al., J. Appl. Anal. Comput. 10, No. 2, 514--529 (2020; Zbl 07315131) Full Text: DOI
Xu, Mengrui; Sun, Shurong; Han, Zhenlai Solvability for impulsive fractional Langevin equation. (English) Zbl 07315129 J. Appl. Anal. Comput. 10, No. 2, 486-494 (2020). MSC: 34A37 34A08 34B15 PDF BibTeX XML Cite \textit{M. Xu} et al., J. Appl. Anal. Comput. 10, No. 2, 486--494 (2020; Zbl 07315129) Full Text: DOI
Zhang, Huiqin; Mo, Yan; Wang, Zhibo A high order difference method for fractional sub-diffusion equations with the spatially variable coefficients under periodic boundary conditions. (English) Zbl 07315128 J. Appl. Anal. Comput. 10, No. 2, 474-485 (2020). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Appl. Anal. Comput. 10, No. 2, 474--485 (2020; Zbl 07315128) Full Text: DOI
Wang, Jingqun; Tian, Lixin Boundary controllability for the time-fractional nonlinear Korteweg-de Vries (KdV) equation. (English) Zbl 07315119 J. Appl. Anal. Comput. 10, No. 2, 411-426 (2020). MSC: 93B05 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Tian}, J. Appl. Anal. Comput. 10, No. 2, 411--426 (2020; Zbl 07315119) Full Text: DOI
Mansouri, A.; Rezapour, Sh. Investigating a solution of a multi-singular pointwise defined fractional integro-differential equation with Caputo derivative boundary condition. (English) Zbl 07314263 J. Math. Ext. 14, No. 2, 15-47 (2020). MSC: 45J05 34A08 34B16 PDF BibTeX XML Cite \textit{A. Mansouri} and \textit{Sh. Rezapour}, J. Math. Ext. 14, No. 2, 15--47 (2020; Zbl 07314263) Full Text: Link
Rahman, Ghaus ur; Mostefai, Fatima-Zohra Existence theory and topological aspects of the solution set of integrodifferential equations. (English) Zbl 07312930 Int. J. Difference Equ. 15, No. 2, 511-530 (2020). MSC: 34A08 PDF BibTeX XML Cite \textit{G. u. Rahman} and \textit{F.-Z. Mostefai}, Int. J. Difference Equ. 15, No. 2, 511--530 (2020; Zbl 07312930) Full Text: Link
Salim, Krim; Abbas, Saïd; Benchohra, Mouffak; Darwish, Mohamed Abdella Boundary value problem for implicit Caputo-Fabrizio fractional differential equations. (English) Zbl 07312929 Int. J. Difference Equ. 15, No. 2, 493-510 (2020). MSC: 34A08 34G20 PDF BibTeX XML Cite \textit{K. Salim} et al., Int. J. Difference Equ. 15, No. 2, 493--510 (2020; Zbl 07312929) Full Text: Link
Luca, Rodica Positive solutions for a nonlocal fractional boundary value problem with \(r\)-Laplacian operator. (English. English summary) Zbl 07312926 Int. J. Difference Equ. 15, No. 2, 461-471 (2020). MSC: 34A08 34B15 45G15 PDF BibTeX XML Cite \textit{R. Luca}, Int. J. Difference Equ. 15, No. 2, 461--471 (2020; Zbl 07312926) Full Text: Link
Islam, Muhammad N.; Neugebauer, Jeffrey T. Initial value problems for fractional differential equations of Riemann-Liouville type. (English) Zbl 07312896 Adv. Dyn. Syst. Appl. 15, No. 2, 113-124 (2020). MSC: 34A08 34A12 45D05 45E10 45G05 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{J. T. Neugebauer}, Adv. Dyn. Syst. Appl. 15, No. 2, 113--124 (2020; Zbl 07312896) Full Text: Link
Henderson, Johnny; Neugebauer, Jeffrey T. Errata to “Comparison of smallest eigenvalues for fractional-order nonlocal boundary value problems”. (English) Zbl 07312889 Adv. Dyn. Syst. Appl. 15, No. 1, 27-28 (2020). MSC: 34A08 34B05 34B09 34B10 PDF BibTeX XML Cite \textit{J. Henderson} and \textit{J. T. Neugebauer}, Adv. Dyn. Syst. Appl. 15, No. 1, 27--28 (2020; Zbl 07312889) Full Text: Link
Giordano, Luca M.; Jolis, Maria; Quer-Sardanyons, Lluís SPDEs with linear multiplicative fractional noise: continuity in law with respect to the Hurst index. (English) Zbl 07312460 Stochastic Processes Appl. 130, No. 12, 7396-7430 (2020). MSC: 60B10 60H07 60H15 60G22 PDF BibTeX XML Cite \textit{L. M. Giordano} et al., Stochastic Processes Appl. 130, No. 12, 7396--7430 (2020; Zbl 07312460) Full Text: DOI
Chakraborty, Prakash; Chen, Xia; Gao, Bo; Tindel, Samy Quenched asymptotics for a 1-d stochastic heat equation driven by a rough spatial noise. (English) Zbl 07312345 Stochastic Processes Appl. 130, No. 11, 6689-6732 (2020). MSC: 60H15 60G22 60L20 PDF BibTeX XML Cite \textit{P. Chakraborty} et al., Stochastic Processes Appl. 130, No. 11, 6689--6732 (2020; Zbl 07312345) Full Text: DOI
He, Guitian; Liu, Heng; Tang, Guoji; Cao, Jinde Resonance behavior for a generalized Mittag-Leffler fractional Langevin equation with hydrodynamic interactions. (English) Zbl 07312241 Int. J. Mod. Phys. B 34, No. 32, Article ID 2050310, 23 p. (2020). MSC: 34F05 34F15 34A08 76A10 PDF BibTeX XML Cite \textit{G. He} et al., Int. J. Mod. Phys. B 34, No. 32, Article ID 2050310, 23 p. (2020; Zbl 07312241) Full Text: DOI
Rezazadeh, Hadi; Souleymanou, Abbagari; Korkmaz, Alper; Khater, Mostafa M. A.; Mukam, Serge P. T.; Kuetche, Victor K. New exact solitary waves solutions to the fractional Fokas-Lenells equation via Atangana-Baleanu derivative operator. (English) Zbl 07312239 Int. J. Mod. Phys. B 34, No. 31, Article ID 2050309, 14 p. (2020). MSC: 35Q60 35R11 35C08 PDF BibTeX XML Cite \textit{H. Rezazadeh} et al., Int. J. Mod. Phys. B 34, No. 31, Article ID 2050309, 14 p. (2020; Zbl 07312239) Full Text: DOI
Xiao, Rui; Sun, Zhongkui Control of amplitude death by coupling range in a network of fractional-order oscillators. (English) Zbl 07312233 Int. J. Mod. Phys. B 34, No. 31, Article ID 2050303, 12 p. (2020). MSC: 34C15 34A08 34C60 PDF BibTeX XML Cite \textit{R. Xiao} and \textit{Z. Sun}, Int. J. Mod. Phys. B 34, No. 31, Article ID 2050303, 12 p. (2020; Zbl 07312233) Full Text: DOI
Ding, Dawei; Luo, Jun; Shan, Xiangyu; Hu, Yongbin; Yang, Zongli; Ding, Lianghui Coexisting behaviors of a fraction-order novel hyperbolic-type memristor Hopfield neuron network based on three neurons. (English) Zbl 07312232 Int. J. Mod. Phys. B 34, No. 31, Article ID 2050302, 17 p. (2020). MSC: 92B20 34A08 34C60 PDF BibTeX XML Cite \textit{D. Ding} et al., Int. J. Mod. Phys. B 34, No. 31, Article ID 2050302, 17 p. (2020; Zbl 07312232) Full Text: DOI
Zafar, Asim; Bekir, Ahmet; Khalid, Bushra; Rezazadeh, Hadi Abundant solitary wave solutions for the fractional coupled Jaulent-Miodek equations arising in applied physics. (English) Zbl 07312207 Int. J. Mod. Phys. B 34, No. 29, Article ID 2050279, 12 p. (2020). MSC: 35R11 35C08 35A25 PDF BibTeX XML Cite \textit{A. Zafar} et al., Int. J. Mod. Phys. B 34, No. 29, Article ID 2050279, 12 p. (2020; Zbl 07312207) Full Text: DOI
Petrosyan, Garik Garikovich Antiperiodic boundary value problem for a semilinear differential equation of fractional order. (English) Zbl 07311845 Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 51-66 (2020). MSC: 34A08 34G20 34C25 47H04 47H08 47H10 PDF BibTeX XML Cite \textit{G. G. Petrosyan}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 51--66 (2020; Zbl 07311845) Full Text: DOI Link
Lapin, A. V.; Levinskaya, K. O. Numerical solution of a quasilinear parabolic equation with a fractional time derivative. (English) Zbl 07309066 Lobachevskii J. Math. 41, No. 12, 2673-2686 (2020). MSC: 65M06 65M12 35K59 35R11 PDF BibTeX XML Cite \textit{A. V. Lapin} and \textit{K. O. Levinskaya}, Lobachevskii J. Math. 41, No. 12, 2673--2686 (2020; Zbl 07309066) Full Text: DOI
Imbert, Cyril; Tarhini, Rana; Vigneron, François Regularity of solutions of a fractional porous medium equation. (English) Zbl 07307914 Interfaces Free Bound. 22, No. 4, 401-442 (2020). MSC: 35B65 76S05 35K55 45P05 45K05 47G10 PDF BibTeX XML Cite \textit{C. Imbert} et al., Interfaces Free Bound. 22, No. 4, 401--442 (2020; Zbl 07307914) Full Text: DOI
Floridia, Giuseppe; Yamamoto, Masahiro Backward problems in time for fractional diffusion-wave equation. (English) Zbl 07305930 Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020). MSC: 35Q99 35R11 35A30 35A01 35A02 PDF BibTeX XML Cite \textit{G. Floridia} and \textit{M. Yamamoto}, Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020; Zbl 07305930) Full Text: DOI
Fedorov, V. E.; Kostić, M. Identification problem for strongly degenerate evolution equations with the Gerasimov-Caputo derivative. (English. Russian original) Zbl 07304921 Differ. Equ. 56, No. 12, 1613-1627 (2020); translation from Differ. Uravn. 57, No. 1, 100-113 (2020). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{M. Kostić}, Differ. Equ. 56, No. 12, 1613--1627 (2020; Zbl 07304921); translation from Differ. Uravn. 57, No. 1, 100--113 (2020) Full Text: DOI
Kheiryan, Alireza; Rezapour, Shahram On Hyers-Ulam stability of two singular fractional integro-differential equations. (English) Zbl 07303977 J. Adv. Math. Stud. 13, No. 3, 339-349 (2020). MSC: 45 PDF BibTeX XML Cite \textit{A. Kheiryan} and \textit{S. Rezapour}, J. Adv. Math. Stud. 13, No. 3, 339--349 (2020; Zbl 07303977) Full Text: Link
Du, Ning; Guo, Xu; Wang, Hong Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations. (English) Zbl 1453.65247 J. Comput. Phys. 405, Article ID 109127, 15 p. (2020). MSC: 65M08 35R09 26A33 76S05 PDF BibTeX XML Cite \textit{N. Du} et al., J. Comput. Phys. 405, Article ID 109127, 15 p. (2020; Zbl 1453.65247) Full Text: DOI
Ahmad, Hijaz; Akgül, Ali; Khan, Tufail A.; Stanimirović, Predrag S.; Chu, Yu-Ming New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations. (English) Zbl 07302882 Complexity 2020, Article ID 8829017, 10 p. (2020). MSC: 35R11 35C10 65M12 PDF BibTeX XML Cite \textit{H. Ahmad} et al., Complexity 2020, Article ID 8829017, 10 p. (2020; Zbl 07302882) Full Text: DOI
Abid, Imed Bifurcation problem for a class of quasilinear fractional Schrödinger equations. (English) Zbl 07301812 J. Korean Math. Soc. 57, No. 6, 1347-1372 (2020). MSC: 37K50 35R11 35J10 35D30 35B35 PDF BibTeX XML Cite \textit{I. Abid}, J. Korean Math. Soc. 57, No. 6, 1347--1372 (2020; Zbl 07301812) Full Text: DOI
Pougkakiotis, Spyridon; Pearson, John W.; Leveque, Santolo; Gondzio, Jacek Fast solution methods for convex quadratic optimization of fractional differential equations. (English) Zbl 07301495 SIAM J. Matrix Anal. Appl. 41, No. 3, 1443-1476 (2020). MSC: 65F08 65M22 65F10 35R11 PDF BibTeX XML Cite \textit{S. Pougkakiotis} et al., SIAM J. Matrix Anal. Appl. 41, No. 3, 1443--1476 (2020; Zbl 07301495) Full Text: DOI
Borah, Jayanta; Bora, Swaroop Nandan Sufficient conditions for existence of integral solution for non-instantaneous impulsive fractional evolution equations. (English) Zbl 07301247 Indian J. Pure Appl. Math. 51, No. 3, 1065-1082 (2020). MSC: 34A08 34G20 34A37 47N20 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. N. Bora}, Indian J. Pure Appl. Math. 51, No. 3, 1065--1082 (2020; Zbl 07301247) Full Text: DOI
Li, Binjie; Wang, Tao; Xie, Xiaoping Numerical analysis of two Galerkin discretizations with graded temporal grids for fractional evolution equations. (English) Zbl 07299088 J. Sci. Comput. 85, No. 3, Paper No. 59, 27 p. (2020). MSC: 65M60 65M15 35R11 PDF BibTeX XML Cite \textit{B. Li} et al., J. Sci. Comput. 85, No. 3, Paper No. 59, 27 p. (2020; Zbl 07299088) Full Text: DOI
Cialenco, Igor; Delgado-Vences, Francisco; Kim, Hyun-Jung Drift estimation for discretely sampled SPDEs. (English) Zbl 07298962 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 895-920 (2020). MSC: 60H15 65L09 62M99 PDF BibTeX XML Cite \textit{I. Cialenco} et al., Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 895--920 (2020; Zbl 07298962) Full Text: DOI
Derakhshan, M. H.; Aminataei, A. A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative. (English) Zbl 07298603 J. Linear Topol. Algebra 9, No. 4, 267-280 (2020). MSC: 65L60 26A33 34K06 PDF BibTeX XML Cite \textit{M. H. Derakhshan} and \textit{A. Aminataei}, J. Linear Topol. Algebra 9, No. 4, 267--280 (2020; Zbl 07298603) Full Text: Link
Ahmad, Israr; Nieto, Juan Jose; Ghaus ur Rahman, Kamal Shah Existence and stability for fractional order pantograph equations with nonlocal conditions. (English) Zbl 07298212 Electron. J. Differ. Equ. 2020, Paper No. 132, 16 p. (2020). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 34K37 34K10 34K20 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Electron. J. Differ. Equ. 2020, Paper No. 132, 16 p. (2020; Zbl 07298212) Full Text: Link
M. S., Shabna; M. C., Ranjini On existence of \(\psi-\)Hilfer hybrid fractional differential equations. (English) Zbl 07296936 South East Asian J. Math. Math. Sci. 16, No. 2, 41-56 (2020). MSC: 26A33 34A38 47H10 34A12 34K37 PDF BibTeX XML Cite \textit{S. M. S.} and \textit{R. M. C.}, South East Asian J. Math. Math. Sci. 16, No. 2, 41--56 (2020; Zbl 07296936) Full Text: Link
Devi, Anju; Jakhar, Manjeet A novel approach for solving fractional Bagley-Torvik equations. (English) Zbl 07296904 South East Asian J. Math. Math. Sci. 16, No. 1, 177-188 (2020). MSC: 26A33 34A08 44A15 PDF BibTeX XML Cite \textit{A. Devi} and \textit{M. Jakhar}, South East Asian J. Math. Math. Sci. 16, No. 1, 177--188 (2020; Zbl 07296904) Full Text: Link
Dastgerdi, Maryam Vahid; Bastani, Ali Foroush Solving parametric fractional differential equations arising from the rough Heston model using quasi-linearization and spectral collocation. (English) Zbl 07296665 SIAM J. Financ. Math. 11, No. 4, 1063-1097 (2020). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 91G30 91G20 91G60 34A08 34A34 PDF BibTeX XML Cite \textit{M. V. Dastgerdi} and \textit{A. F. Bastani}, SIAM J. Financ. Math. 11, No. 4, 1063--1097 (2020; Zbl 07296665) Full Text: DOI
Beck, Geoffrey; Imperiale, Sébastien; Joly, Patrick Asymptotic modelling of skin-effects in coaxial cables. (English) Zbl 07296594 SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 42, 33 p. (2020). MSC: 35Q61 78A25 35B40 35R11 PDF BibTeX XML Cite \textit{G. Beck} et al., SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 42, 33 p. (2020; Zbl 07296594) Full Text: DOI
Wang, Yang; Liu, Yansheng Positive and negative solutions for the nonlinear fractional Kirchhoff equation in \(\mathbb{R}^N \). (English) Zbl 07296576 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 25, 19 p. (2020). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Liu}, SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 25, 19 p. (2020; Zbl 07296576) Full Text: DOI
Avetisian, Diana; Ralchenko, Kostiantyn Ergodic properties of the solution to a fractional stochastic heat equation, with an application to diffusion parameter estimation. (English) Zbl 07296197 Mod. Stoch., Theory Appl. 7, No. 3, 339-356 (2020). MSC: 60H15 35R11 35R60 60G22 62F10 PDF BibTeX XML Cite \textit{D. Avetisian} and \textit{K. Ralchenko}, Mod. Stoch., Theory Appl. 7, No. 3, 339--356 (2020; Zbl 07296197) Full Text: DOI
Zhang, Yan; Chen, Zhaohui New exact solutions of the space-time fractional mKdV-ZK equation by the first integral method. (Chinese. English summary) Zbl 07296063 Math. Pract. Theory 50, No. 13, 243-250 (2020). MSC: 35Q53 35R11 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Chen}, Math. Pract. Theory 50, No. 13, 243--250 (2020; Zbl 07296063)
Yang, Yue; Wang, Yongmao Asian option pricing under sub-fractional Brownian motion with jump. (Chinese. English summary) Zbl 07296052 Math. Pract. Theory 50, No. 13, 131-140 (2020). MSC: 91G20 60G22 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{Y. Wang}, Math. Pract. Theory 50, No. 13, 131--140 (2020; Zbl 07296052)
Shen, Kaiyue; Zhou, Zongfu Positive solutions for fractional differential equations with integral and infinite-point boundary conditions. (English) Zbl 07295970 Math. Appl. 33, No. 3, 563-571 (2020). MSC: 34B18 34A08 PDF BibTeX XML Cite \textit{K. Shen} and \textit{Z. Zhou}, Math. Appl. 33, No. 3, 563--571 (2020; Zbl 07295970)
Zhou, Jueliang; He, Yubo; Xie, Leping Existence of solutions for the coupled system of nonlinear fractional differential equations. (Chinese. English summary) Zbl 07295958 J. Zhengzhou Univ., Nat. Sci. Ed. 52, No. 3, 87-90 (2020). MSC: 34A12 34A08 34A34 PDF BibTeX XML Cite \textit{J. Zhou} et al., J. Zhengzhou Univ., Nat. Sci. Ed. 52, No. 3, 87--90 (2020; Zbl 07295958) Full Text: DOI
He, Dingyu Existence of solutions for a class of boundary value problem of high-order fractional differential equations. (Chinese. English summary) Zbl 07295698 J. Sichuan Univ., Nat. Sci. Ed. 57, No. 3, 443-449 (2020). MSC: 34B15 34A08 PDF BibTeX XML Cite \textit{D. He}, J. Sichuan Univ., Nat. Sci. Ed. 57, No. 3, 443--449 (2020; Zbl 07295698) Full Text: DOI
Li, Xiaolong Positive solutions of nonlinear fractional boundary value problems in ordered Banach spaces. (Chinese. English summary) Zbl 07295689 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 475-479 (2020). MSC: 34B18 34A08 PDF BibTeX XML Cite \textit{X. Li}, J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 475--479 (2020; Zbl 07295689) Full Text: DOI
Yin, Chuankai; Tian, Yu Multiple solutions for a fractional-order differential equation with Sturm-Liouville boundary condition. (English) Zbl 07295659 J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 359-370 (2020). MSC: 34A08 34B24 PDF BibTeX XML Cite \textit{C. Yin} and \textit{Y. Tian}, J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 359--370 (2020; Zbl 07295659) Full Text: DOI
Zhao, Xin; Xia, Shanlei Exact traveling wave solutions for the time fractional nonlinear evolution equation by sub-equation method. (Chinese. English summary) Zbl 07295569 J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 26-29 (2020). MSC: 35C07 35Q53 35R11 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{S. Xia}, J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 26--29 (2020; Zbl 07295569) Full Text: DOI