Jacquier, Antoine; Pannier, Alexandre Large and moderate deviations for stochastic Volterra systems. (English) Zbl 07527294 Stochastic Processes Appl. 149, 142-187 (2022). MSC: 60F10 60G22 91G20 PDF BibTeX XML Cite \textit{A. Jacquier} and \textit{A. Pannier}, Stochastic Processes Appl. 149, 142--187 (2022; Zbl 07527294) Full Text: DOI OpenURL
Ahmad, Bashir; Alsaedi, Ahmed; Alblewi, Manal; Ntouyas, Sotiris K. An existence result for multi-term fractional integro-differential inclusions via nonlinear alternative for multi-valued contractive maps. (English) Zbl 07527199 Acta Math. Univ. Comen., New Ser. 91, No. 2, 121-140 (2022). MSC: 34A08 34A60 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Acta Math. Univ. Comen., New Ser. 91, No. 2, 121--140 (2022; Zbl 07527199) Full Text: Link OpenURL
Bhanotar, Shailesh A.; Belgacem, Fethi Bin Muhammad Theory and applications of distinctive conformable triple Laplace and sumudu transforms decomposition methods. (English) Zbl 07526997 J. Partial Differ. Equations 35, No. 1, 49-77 (2022). MSC: 35A25 35M12 35Q40 35R11 PDF BibTeX XML Cite \textit{S. A. Bhanotar} and \textit{F. B. M. Belgacem}, J. Partial Differ. Equations 35, No. 1, 49--77 (2022; Zbl 07526997) Full Text: DOI OpenURL
Ngondiep, Eric A two-level fourth-order approach for time-fractional convection-diffusion-reaction equation with variable coefficients. (English) Zbl 07526847 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106444, 30 p. (2022). MSC: 65M12 65M06 PDF BibTeX XML Cite \textit{E. Ngondiep}, Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106444, 30 p. (2022; Zbl 07526847) Full Text: DOI OpenURL
Ding, Hengfei; Yi, Qian The construction of higher-order numerical approximation formula for Riesz derivative and its application to nonlinear fractional differential equations (I). (English) Zbl 07526714 Commun. Nonlinear Sci. Numer. Simul. 110, Article ID 106394, 32 p. (2022). MSC: 65Mxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{H. Ding} and \textit{Q. Yi}, Commun. Nonlinear Sci. Numer. Simul. 110, Article ID 106394, 32 p. (2022; Zbl 07526714) Full Text: DOI OpenURL
Lazreg, Jamal Eddine; Benkhettou, Nadia; Benchohra, Mouffak; Karapinar, Erdal Neutral functional sequential differential equations with Caputo fractional derivative on time scales. (English) Zbl 07525635 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 6, 16 p. (2022). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{J. E. Lazreg} et al., Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 6, 16 p. (2022; Zbl 07525635) Full Text: DOI OpenURL
Srivastava, H. M.; Raghavan, Divya; Nagarajan, Sukavanam A comparative study of the stability of some fractional-order cobweb economic models. (English) Zbl 07524915 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 98, 20 p. (2022). MSC: 91-XX 26A33 33E12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 98, 20 p. (2022; Zbl 07524915) Full Text: DOI OpenURL
Xiong, Yunfeng; Guo, Xu A short-memory operator splitting scheme for constant-Q viscoelastic wave equation. (English) Zbl 07524792 J. Comput. Phys. 449, Article ID 110796, 23 p. (2022). MSC: 65Mxx 65Nxx 35Rxx PDF BibTeX XML Cite \textit{Y. Xiong} and \textit{X. Guo}, J. Comput. Phys. 449, Article ID 110796, 23 p. (2022; Zbl 07524792) Full Text: DOI OpenURL
Ahmadova, Arzu; Huseynov, Ismail T.; Mahmudov, Nazim I. Existence and stability results on multidimensional fractional-order systems. (English) Zbl 07524606 Rocky Mt. J. Math. 52, No. 1, 1-14 (2022). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{A. Ahmadova} et al., Rocky Mt. J. Math. 52, No. 1, 1--14 (2022; Zbl 07524606) Full Text: DOI Link OpenURL
Hamouda, Saada; Mahmoudi, Sofiane Growth of solutions of a class of linear fractional differential equations with polynomial coefficients. (English) Zbl 07524449 Opusc. Math. 42, No. 3, 415-426 (2022). MSC: 34M10 26A33 PDF BibTeX XML Cite \textit{S. Hamouda} and \textit{S. Mahmoudi}, Opusc. Math. 42, No. 3, 415--426 (2022; Zbl 07524449) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and uniqueness of solutions for fractional relaxation integro-differential equations with boundary conditions. (English) Zbl 07524414 Facta Univ., Ser. Math. Inf. 37, No. 1, 211-221 (2022). MSC: 34A08 34A12 34B15 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 211--221 (2022; Zbl 07524414) Full Text: DOI OpenURL
Çetinkaya, Süleyman; Bayrak, Mine Aylin; Demir, Ali; Baleanu, Dumitru Solutions for the fractional mathematical models of diffusion process. (English) Zbl 07524408 Facta Univ., Ser. Math. Inf. 37, No. 1, 103-120 (2022). MSC: 34K37 35A22 26A33 PDF BibTeX XML Cite \textit{S. Çetinkaya} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 103--120 (2022; Zbl 07524408) Full Text: DOI OpenURL
Herik, Leila Moghadam Dizaj; Javidi, Mohammad; Shafiee, Mahmoud A new numerical method for solving fractional new numerical method for solving fractional differential equations in the sense of Caputo-Fabrizio derivative. (English) Zbl 07524404 Facta Univ., Ser. Math. Inf. 37, No. 1, 051-066 (2022). MSC: 34A08 65D25 PDF BibTeX XML Cite \textit{L. M. D. Herik} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 051--066 (2022; Zbl 07524404) Full Text: DOI OpenURL
Alnafisah, Yousef; Ahmed, Hamdy M. Neutral delay hilfer fractional integrodifferential equations with fractional Brownian motion. (English) Zbl 07524394 Evol. Equ. Control Theory 11, No. 3, 925-937 (2022). MSC: 93B05 34A08 60G51 PDF BibTeX XML Cite \textit{Y. Alnafisah} and \textit{H. M. Ahmed}, Evol. Equ. Control Theory 11, No. 3, 925--937 (2022; Zbl 07524394) Full Text: DOI OpenURL
Li, Yulong; Telyakovskiy, Aleksey S.; Çelik, Emine Analysis of one-sided 1-D fractional diffusion operator. (English) Zbl 07524320 Commun. Pure Appl. Anal. 21, No. 5, 1673-1690 (2022). MSC: 34B05 34L10 34B09 PDF BibTeX XML Cite \textit{Y. Li} et al., Commun. Pure Appl. Anal. 21, No. 5, 1673--1690 (2022; Zbl 07524320) Full Text: DOI OpenURL
Kassymov, Aidyn; Tokmagambetov, Niyaz; Torebek, Berikbol Multi-term time-fractional diffusion equation and system: mild solutions and critical exponents. (English) Zbl 07523938 Publ. Math. 100, No. 3-4, 295-321 (2022). MSC: 35R11 34B10 35R03 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Publ. Math. 100, No. 3--4, 295--321 (2022; Zbl 07523938) Full Text: DOI OpenURL
Pattnaik, Ashapurna; Padhan, Saroj Kumar; Mohapatra, R. N. Sufficient conditions for extremum of fractional variational problems. (English) Zbl 07523412 RAIRO, Oper. Res. 56, No. 2, 637-648 (2022). MSC: 26A33 58E15 34K37 49K10 49K20 35R11 PDF BibTeX XML Cite \textit{A. Pattnaik} et al., RAIRO, Oper. Res. 56, No. 2, 637--648 (2022; Zbl 07523412) Full Text: DOI OpenURL
Chauhan, Rajendrakumar B.; Chudasama, Meera H. A study of the right local general truncated \(M\)-fractional derivative. (English) Zbl 07523397 Commun. Korean Math. Soc. 37, No. 2, 503-520 (2022). MSC: 26A06 26A24 26A33 26A42 33E12 PDF BibTeX XML Cite \textit{R. B. Chauhan} and \textit{M. H. Chudasama}, Commun. Korean Math. Soc. 37, No. 2, 503--520 (2022; Zbl 07523397) Full Text: DOI OpenURL
Öztürk, Zafer; Bilgil, Halis; Erdinç, Ümmügülsüm An optimized continuous fractional grey model for forecasting of the time dependent real world cases. (English) Zbl 07523317 Hacet. J. Math. Stat. 51, No. 1, 308-326 (2022). MSC: 60G25 34B60 68U01 PDF BibTeX XML Cite \textit{Z. Öztürk} et al., Hacet. J. Math. Stat. 51, No. 1, 308--326 (2022; Zbl 07523317) Full Text: DOI OpenURL
Ma, Jingtang; Wu, Haofei A fast algorithm for simulation of rough volatility models. (English) Zbl 07518198 Quant. Finance 22, No. 3, 447-462 (2022). MSC: 91G20 60G22 PDF BibTeX XML Cite \textit{J. Ma} and \textit{H. Wu}, Quant. Finance 22, No. 3, 447--462 (2022; Zbl 07518198) Full Text: DOI OpenURL
Colbrook, Matthew J.; Ayton, Lorna J. A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations. (English) Zbl 07518066 J. Comput. Phys. 454, Article ID 110995, 24 p. (2022). MSC: 65Mxx 65Rxx 65Lxx PDF BibTeX XML Cite \textit{M. J. Colbrook} and \textit{L. J. Ayton}, J. Comput. Phys. 454, Article ID 110995, 24 p. (2022; Zbl 07518066) Full Text: DOI OpenURL
Khochemane, Houssem Eddine; Ardjouni, Abdelouaheb; Zitouni, Salah Existence and Ulam stability results for two orders neutral fractional differential equations. (English) Zbl 07517297 Afr. Mat. 33, No. 2, Paper No. 35, 16 p. (2022). MSC: 26A33 34A08 34K05 PDF BibTeX XML Cite \textit{H. E. Khochemane} et al., Afr. Mat. 33, No. 2, Paper No. 35, 16 p. (2022; Zbl 07517297) Full Text: DOI OpenURL
Guariglia, Emanuel Fractional calculus of the Lerch zeta function. (English) Zbl 07516913 Mediterr. J. Math. 19, No. 3, Paper No. 109, 11 p. (2022). MSC: 11-XX 26A33 11M35 30D05 PDF BibTeX XML Cite \textit{E. Guariglia}, Mediterr. J. Math. 19, No. 3, Paper No. 109, 11 p. (2022; Zbl 07516913) Full Text: DOI OpenURL
Tavasani, B. Bagherzadeh; Sheikhani, A. H. Refahi; Aminikhah, H. Numerical scheme to solve a class of variable-order Hilfer-Prabhakar fractional differential equations with Jacobi wavelets polynomials. (English) Zbl 07515500 Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 35-51 (2022). MSC: 26A33 34A08 65N35 PDF BibTeX XML Cite \textit{B. B. Tavasani} et al., Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 35--51 (2022; Zbl 07515500) Full Text: DOI OpenURL
Bulavatsky, V. M. Some boundary-value problems of filtration dynamics corresponding to models of fractional diffusion of distributed order. (English. Ukrainian original) Zbl 07514996 Cybern. Syst. Anal. 58, No. 1, 65-76 (2022); translation from Kibern. Sist. Anal. 58, No. 1, 77-89 (2022). MSC: 35C05 35K51 35R11 35R30 PDF BibTeX XML Cite \textit{V. M. Bulavatsky}, Cybern. Syst. Anal. 58, No. 1, 65--76 (2022; Zbl 07514996); translation from Kibern. Sist. Anal. 58, No. 1, 77--89 (2022) Full Text: DOI OpenURL
Sadri, Khadijeh; Aminikhah, Hossein A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation. (English) Zbl 07513120 Int. J. Comput. Math. 99, No. 5, 966-992 (2022). MSC: 34A08 65M70 PDF BibTeX XML Cite \textit{K. Sadri} and \textit{H. Aminikhah}, Int. J. Comput. Math. 99, No. 5, 966--992 (2022; Zbl 07513120) Full Text: DOI OpenURL
Farman, Muhammad; Akgül, Ali; Nisar, Kottakkaran Sooppy; Ahmad, Dilshad; Ahmad, Aqeel; Kamangar, Sarfaraz; Saleel, C. Ahamed Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. (English) Zbl 07512925 AIMS Math. 7, No. 1, 756-783 (2022). MSC: 92D30 37N25 34A08 34C60 37C75 PDF BibTeX XML Cite \textit{M. Farman} et al., AIMS Math. 7, No. 1, 756--783 (2022; Zbl 07512925) Full Text: DOI OpenURL
Mallah, Ishfaq; Ahmed, Idris; Akgul, Ali; Jarad, Fahd; Alha, Subhash On \(\psi\)-Hilfer generalized proportional fractional operators. (English) Zbl 07512884 AIMS Math. 7, No. 1, 82-103 (2022). MSC: 34A08 PDF BibTeX XML Cite \textit{I. Mallah} et al., AIMS Math. 7, No. 1, 82--103 (2022; Zbl 07512884) Full Text: DOI OpenURL
Pang, Hong-Kui; Qin, Hai-Hua; Sun, Hai-Wei All-at-once method for variable-order time fractional diffusion equations. (English) Zbl 07512654 Numer. Algorithms 90, No. 1, 31-57 (2022). MSC: 65M06 65D05 65M12 65F10 PDF BibTeX XML Cite \textit{H.-K. Pang} et al., Numer. Algorithms 90, No. 1, 31--57 (2022; Zbl 07512654) Full Text: DOI OpenURL
Sweilam, Nasser H.; Assiri, Taghreed A.; Hasan, Muner M. Abou Optimal control problem of variable-order delay system of advertising procedure: numerical treatment. (English) Zbl 07512226 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1247-1268 (2022). MSC: 49S05 26A33 49M25 65L03 91Bxx PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1247--1268 (2022; Zbl 07512226) Full Text: DOI OpenURL
Boutiara, Abdellatif; Benbachir, Maamar; Kaabar, Mohammed K. A.; Martínez, Francisco; Samei, Mohammad Esmael; Kaplan, Melike Explicit iteration and unbounded solutions for fractional \(q\)-difference equations with boundary conditions on an infinite interval. (English) Zbl 07512184 J. Inequal. Appl. 2022, Paper No. 29, 27 p. (2022). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{A. Boutiara} et al., J. Inequal. Appl. 2022, Paper No. 29, 27 p. (2022; Zbl 07512184) Full Text: DOI OpenURL
Butt, Saad Ihsan; Agarwal, Praveen; Yousaf, Saba; Guirao, Juan L. G. Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications. (English) Zbl 07512156 J. Inequal. Appl. 2022, Paper No. 1, 18 p. (2022). MSC: 26D10 26A51 26A33 PDF BibTeX XML Cite \textit{S. I. Butt} et al., J. Inequal. Appl. 2022, Paper No. 1, 18 p. (2022; Zbl 07512156) Full Text: DOI OpenURL
Apostolov, Stoyan; Dimitrov, Yuri; Todorov, Venelin Constructions of second order approximations of the Caputo fractional derivative. (English) Zbl 07511617 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 31-39 (2022). MSC: 65D25 PDF BibTeX XML Cite \textit{S. Apostolov} et al., Lect. Notes Comput. Sci. 13127, 31--39 (2022; Zbl 07511617) Full Text: DOI OpenURL
Chou, Lot-Kei; Lei, Siu-Long High dimensional Riesz space distributed-order advection-dispersion equations with ADI scheme in compression format. (English) Zbl 07510644 Electron Res. Arch. 30, No. 4, 1463-1476 (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{L.-K. Chou} and \textit{S.-L. Lei}, Electron Res. Arch. 30, No. 4, 1463--1476 (2022; Zbl 07510644) Full Text: DOI OpenURL
Nguyen, Anh Tuan; Yang, Chao On a time-space fractional diffusion equation with a semilinear source of exponential type. (English) Zbl 07510638 Electron Res. Arch. 30, No. 4, 1354-1373 (2022). MSC: 35R11 35K15 PDF BibTeX XML Cite \textit{A. T. Nguyen} and \textit{C. Yang}, Electron Res. Arch. 30, No. 4, 1354--1373 (2022; Zbl 07510638) Full Text: DOI OpenURL
Aydin, Mustafa; Mahmudov, Nazim I.; Aktuğlu, Hüseyin; Baytunç, Erdem; Atamert, Mehmet S. On a study of the representation of solutions of a \(\Psi\)-Caputo fractional differential equations with a single delay. (English) Zbl 07510620 Electron Res. Arch. 30, No. 3, 1016-1034 (2022). MSC: 34-XX 93-XX PDF BibTeX XML Cite \textit{M. Aydin} et al., Electron Res. Arch. 30, No. 3, 1016--1034 (2022; Zbl 07510620) Full Text: DOI OpenURL
Naik, Parvaiz Ahmad; Ghoreishi, Mohammad; Zu, Jian Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method. (English) Zbl 07509157 Int. J. Numer. Anal. Model. 19, No. 1, 52-84 (2022). MSC: 26A33 34D20 37M05 37N25 65L20 92B05 93A30 PDF BibTeX XML Cite \textit{P. A. Naik} et al., Int. J. Numer. Anal. Model. 19, No. 1, 52--84 (2022; Zbl 07509157) Full Text: Link OpenURL
Choudhary, Renu; Singh, Satpal; Kumar, Devendra A second-order numerical scheme for the time-fractional partial differential equations with a time delay. (English) Zbl 07507667 Comput. Appl. Math. 41, No. 3, Paper No. 114, 28 p. (2022). MSC: 26A33 65D07 34K37 65M12 65M70 35R11 PDF BibTeX XML Cite \textit{R. Choudhary} et al., Comput. Appl. Math. 41, No. 3, Paper No. 114, 28 p. (2022; Zbl 07507667) Full Text: DOI OpenURL
Marasi, H. R.; Derakhshan, M. H. Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis. (English) Zbl 07507659 Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022). MSC: 26A33 34A08 65L05 45J99 65R20 PDF BibTeX XML Cite \textit{H. R. Marasi} and \textit{M. H. Derakhshan}, Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022; Zbl 07507659) Full Text: DOI OpenURL
Butt, Saad Ihsan; Yousaf, Saba; Younas, Muhammad; Ahmad, Hijaz; Yao, Shao-Wen Fractal Hadamard-Mercer-type inequalities with applications. (English) Zbl 07507539 Fractals 30, No. 2, Article ID 2240055, 14 p. (2022). MSC: 26Dxx 26Axx 26Exx PDF BibTeX XML Cite \textit{S. I. Butt} et al., Fractals 30, No. 2, Article ID 2240055, 14 p. (2022; Zbl 07507539) Full Text: DOI OpenURL
Wang, Fuzhang; Khan, Muhammad Nawaz; Ahmad, Imtiaz; Ahmad, Hijaz; Abu-Zinadah, Hanaa; Chu, Yu-Ming Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. (English) Zbl 07507535 Fractals 30, No. 2, Article ID 2240051, 11 p. (2022). MSC: 65Mxx 35Kxx 35Cxx PDF BibTeX XML Cite \textit{F. Wang} et al., Fractals 30, No. 2, Article ID 2240051, 11 p. (2022; Zbl 07507535) Full Text: DOI OpenURL
Irgashev, B. Yu. Initial-boundary problem for degenerate high order equation with fractional derivative. (English) Zbl 07506501 Indian J. Pure Appl. Math. 53, No. 1, 170-180 (2022). MSC: 35R11 35C10 35G16 PDF BibTeX XML Cite \textit{B. Yu. Irgashev}, Indian J. Pure Appl. Math. 53, No. 1, 170--180 (2022; Zbl 07506501) Full Text: DOI OpenURL
Foukrach, Djamal; Bouriah, Soufyane; Benchohra, Mouffak; Karapinar, Erdal Some new results for \(\psi\)-Hilfer fractional pantograph-type differential equation depending on \(\psi\)-Riemann-Liouville integral. (English) Zbl 1483.34013 J. Anal. 30, No. 1, 195-219 (2022). MSC: 34A08 34A12 34B40 45J05 PDF BibTeX XML Cite \textit{D. Foukrach} et al., J. Anal. 30, No. 1, 195--219 (2022; Zbl 1483.34013) Full Text: DOI OpenURL
Abdollahy, Z.; Mahmoudi, Y.; Shamloo, A. Salimi; Baghmisheh, M. Haar wavelets method for time fractional Riesz space telegraph equation with separable solution. (English) Zbl 07505717 Rep. Math. Phys. 89, No. 1, 81-96 (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{Z. Abdollahy} et al., Rep. Math. Phys. 89, No. 1, 81--96 (2022; Zbl 07505717) Full Text: DOI OpenURL
Liu, Can; Yu, Zhe; Zhang, Xinming; Wu, Boying An implicit wavelet collocation method for variable coefficients space fractional advection-diffusion equations. (English) Zbl 07505513 Appl. Numer. Math. 177, 93-110 (2022). MSC: 65M70 65T60 35R11 65M12 PDF BibTeX XML Cite \textit{C. Liu} et al., Appl. Numer. Math. 177, 93--110 (2022; Zbl 07505513) Full Text: DOI OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Gawish, Fatma A.; Abdalla, Mostafa H. On the behaviour solutions of fractional and partial integro differential heat equations and its numerical solutions. (English) Zbl 07504090 Math. Slovaca 72, No. 2, 397-410 (2022). MSC: 35R11 35R09 35K20 47D06 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., Math. Slovaca 72, No. 2, 397--410 (2022; Zbl 07504090) Full Text: DOI OpenURL
Boutiara, Abdelatif; Benbachir, Maamar; Guerbati, Kaddour Existence and uniqueness solutions of a BVP for nonlinear Caputo-Hadamard fractional differential equation. (English) Zbl 07502359 J. Appl. Nonlinear Dyn. 11, No. 2, 359-374 (2022). MSC: 34A08 34B15 26A33 47N20 PDF BibTeX XML Cite \textit{A. Boutiara} et al., J. Appl. Nonlinear Dyn. 11, No. 2, 359--374 (2022; Zbl 07502359) Full Text: DOI OpenURL
Xie, Changping; Fang, Shaomei Efficient numerical methods for Riesz space-fractional diffusion equations with fractional Neumann boundary conditions. (English) Zbl 07501616 Appl. Numer. Math. 176, 1-18 (2022). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{C. Xie} and \textit{S. Fang}, Appl. Numer. Math. 176, 1--18 (2022; Zbl 07501616) Full Text: DOI OpenURL
Duman, Okan; Develi, Faruk Existence and Hyers-Ulam stability results for partial fractional-order delay differential equations. (English) Zbl 07501062 Result. Math. 77, No. 3, Paper No. 97, 17 p. (2022). MSC: 26A33 34G20 47H10 PDF BibTeX XML Cite \textit{O. Duman} and \textit{F. Develi}, Result. Math. 77, No. 3, Paper No. 97, 17 p. (2022; Zbl 07501062) Full Text: DOI OpenURL
Oliveira, D. S. Properties of \(\psi\)-Mittag-Leffler fractional integrals. (English) Zbl 07501035 Rend. Circ. Mat. Palermo (2) 71, No. 1, 233-246 (2022). MSC: 26A33 33E12 34A08 PDF BibTeX XML Cite \textit{D. S. Oliveira}, Rend. Circ. Mat. Palermo (2) 71, No. 1, 233--246 (2022; Zbl 07501035) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; Nieto, Juan J. Caputo-Fabrizio fractional differential equations with non instantaneous impulses. (English) Zbl 07501028 Rend. Circ. Mat. Palermo (2) 71, No. 1, 131-144 (2022). MSC: 26A33 34A37 34G20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Rend. Circ. Mat. Palermo (2) 71, No. 1, 131--144 (2022; Zbl 07501028) Full Text: DOI OpenURL
Alkhezi, Yousuf; Shah, Nehad Ali; Ntwiga, Davis Bundi Analytical fuzzy analysis of a fractional-order Newell-Whitehead-Segel model with Mittag-Leffler kernel. (English) Zbl 07500980 J. Funct. Spaces 2022, Article ID 2785379, 12 p. (2022). MSC: 35R13 35R11 35A22 PDF BibTeX XML Cite \textit{Y. Alkhezi} et al., J. Funct. Spaces 2022, Article ID 2785379, 12 p. (2022; Zbl 07500980) Full Text: DOI OpenURL
Kumar, Ankit; Jeet, Kamal; Vats, Ramesh Kumar Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. (English) Zbl 1483.34104 Evol. Equ. Control Theory 11, No. 2, 605-619 (2022). MSC: 34K30 34K37 35R11 45G10 93B05 PDF BibTeX XML Cite \textit{A. Kumar} et al., Evol. Equ. Control Theory 11, No. 2, 605--619 (2022; Zbl 1483.34104) Full Text: DOI OpenURL
Ngoc, Tran Bao; Tuan, Nguyen Huy; Sakthivel, R.; O’Regan, Donal Analysis of nonlinear fractional diffusion equations with a Riemann-Liouville derivative. (English) Zbl 07500386 Evol. Equ. Control Theory 11, No. 2, 439-455 (2022). MSC: 26A33 35B65 35B05 35R11 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., Evol. Equ. Control Theory 11, No. 2, 439--455 (2022; Zbl 07500386) Full Text: DOI OpenURL
Alavi, S. A.; Haghighi, A.; Yari, A.; Soltanian, F. Using Mott polynomials operational matrices to optimize multi-dimensional fractional optimal control problems. (English) Zbl 07498503 Iran. J. Numer. Anal. Optim. 12, No. 1, 201-227 (2022). MSC: 49J21 49Mxx 34H05 PDF BibTeX XML Cite \textit{S. A. Alavi} et al., Iran. J. Numer. Anal. Optim. 12, No. 1, 201--227 (2022; Zbl 07498503) Full Text: DOI OpenURL
Almeida, Ricardo; Morgado, M. Luísa Optimality conditions involving the Mittag-Leffler tempered fractional derivative. (English) Zbl 07495848 Discrete Contin. Dyn. Syst., Ser. S 15, No. 3, 519-534 (2022). MSC: 26A33 49K05 49M05 PDF BibTeX XML Cite \textit{R. Almeida} and \textit{M. L. Morgado}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 3, 519--534 (2022; Zbl 07495848) Full Text: DOI OpenURL
Banihashemi, Seddigheh; Jafaria, Hossein; Babaei, Afshin A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. (English) Zbl 07495838 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 339-357 (2022). MSC: 60H35 34K50 34K37 26A33 PDF BibTeX XML Cite \textit{S. Banihashemi} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 339--357 (2022; Zbl 07495838) Full Text: DOI OpenURL
Boudjerida, A.; Seba, D.; N’Guérékata, G. M. Controllability of coupled systems for impulsive \(\phi\)-Hilfer fractional integro-differential inclusions. (English) Zbl 07495645 Appl. Anal. 101, No. 2, 383-400 (2022). MSC: 26A33 93B05 34A37 34A60 47H10 PDF BibTeX XML Cite \textit{A. Boudjerida} et al., Appl. Anal. 101, No. 2, 383--400 (2022; Zbl 07495645) Full Text: DOI OpenURL
Rezazadeh, Arezou; Avazzadeh, Zakieh Numerical approach for solving two dimensional fractal-fractional PDEs using peridynamic method. (English) Zbl 07494135 Int. J. Comput. Math. 99, No. 3, 486-505 (2022). MSC: 43A62 42C15 PDF BibTeX XML Cite \textit{A. Rezazadeh} and \textit{Z. Avazzadeh}, Int. J. Comput. Math. 99, No. 3, 486--505 (2022; Zbl 07494135) Full Text: DOI OpenURL
Li, Shengyue; Cao, Wanrong; Hao, Zhaopeng An extrapolated finite difference method for two-dimensional fractional boundary value problems with non-smooth solution. (English) Zbl 07494124 Int. J. Comput. Math. 99, No. 2, 274-291 (2022). MSC: 26A33 65M06 65M12 65M55 65T50 PDF BibTeX XML Cite \textit{S. Li} et al., Int. J. Comput. Math. 99, No. 2, 274--291 (2022; Zbl 07494124) Full Text: DOI OpenURL
Liu, Li-Bin; Chen, Yanping A posteriori error estimation and adaptive strategy for a nonlinear fractional differential equation. (English) Zbl 07494122 Int. J. Comput. Math. 99, No. 2, 240-246 (2022). MSC: 65L05 65L12 65L20 PDF BibTeX XML Cite \textit{L.-B. Liu} and \textit{Y. Chen}, Int. J. Comput. Math. 99, No. 2, 240--246 (2022; Zbl 07494122) Full Text: DOI OpenURL
Dorrego, Gustavo A. Analytical solution of the generalized space-time fractional ultra-hyperbolic differential equation. (English) Zbl 07493957 Integral Transforms Spec. Funct. 33, No. 4, 264-275 (2022). MSC: 26A33 33E12 33E20 35R11 PDF BibTeX XML Cite \textit{G. A. Dorrego}, Integral Transforms Spec. Funct. 33, No. 4, 264--275 (2022; Zbl 07493957) Full Text: DOI OpenURL
Bouzeffour, F.; Garayev, M. On the fractional Bessel operator. (English) Zbl 07493955 Integral Transforms Spec. Funct. 33, No. 3, 230-246 (2022). MSC: 47-XX 35K57 33C10 PDF BibTeX XML Cite \textit{F. Bouzeffour} and \textit{M. Garayev}, Integral Transforms Spec. Funct. 33, No. 3, 230--246 (2022; Zbl 07493955) Full Text: DOI OpenURL
Bouazza, Zoubida; Souid, Mohammed Said; Rakočević, Vladimir On Ulam-Hyers-Rassias stability of the boundary value problem of Hadamard fractional differential equations of variable order. (English) Zbl 07492769 Afr. Mat. 33, No. 1, Paper No. 26, 17 p. (2022). MSC: 26A33 34A08 34K37 PDF BibTeX XML Cite \textit{Z. Bouazza} et al., Afr. Mat. 33, No. 1, Paper No. 26, 17 p. (2022; Zbl 07492769) Full Text: DOI OpenURL
Diethelm, Kai; Kitzing, Konrad; Picard, Rainer; Siegmund, Stefan; Trostorff, Sascha; Waurick, Marcus A Hilbert space approach to fractional differential equations. (English) Zbl 07491616 J. Dyn. Differ. Equations 34, No. 1, 481-504 (2022). MSC: 26A33 45D05 PDF BibTeX XML Cite \textit{K. Diethelm} et al., J. Dyn. Differ. Equations 34, No. 1, 481--504 (2022; Zbl 07491616) Full Text: DOI arXiv OpenURL
Tunc, Cemil An application of Lyapunov functions to properties of solutions of a perturbed fractional differential system. (English) Zbl 07491390 Int. J. Math. Comput. Sci. 17, No. 2, 537-550 (2022). MSC: 34D05 34K20 45J05 PDF BibTeX XML Cite \textit{C. Tunc}, Int. J. Math. Comput. Sci. 17, No. 2, 537--550 (2022; Zbl 07491390) Full Text: Link OpenURL
Kumar, Vikas; Kumari, Nitu Stability and bifurcation analysis of fractional-order delayed prey-predator system and the effect of diffusion. (English) Zbl 07491220 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 1, Article ID 2250002, 22 p. (2022). MSC: 34K60 92D25 34K37 34K20 34K21 34K18 34K13 35R11 PDF BibTeX XML Cite \textit{V. Kumar} and \textit{N. Kumari}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 1, Article ID 2250002, 22 p. (2022; Zbl 07491220) Full Text: DOI OpenURL
Petkevičiūtė-Gerlach, Daiva; Šmidtaitė, Rasa; Ragulskis, Minvydas Intermittent bursting in the fractional difference logistic map of matrices. (English) Zbl 07491217 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 1, Article ID 2230002, 12 p. (2022). MSC: 37Nxx 92Cxx 76Fxx PDF BibTeX XML Cite \textit{D. Petkevičiūtė-Gerlach} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 1, Article ID 2230002, 12 p. (2022; Zbl 07491217) Full Text: DOI OpenURL
Han, Xue-Feng; Wang, Kang-Le A novel variational perspective to fractal wave equations with variable coefficients. (English) Zbl 07490712 Fractals 30, No. 1, Article ID 2250026, 8 p. (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{X.-F. Han} and \textit{K.-L. Wang}, Fractals 30, No. 1, Article ID 2250026, 8 p. (2022; Zbl 07490712) Full Text: DOI OpenURL
Xie, Chengxuan; Xia, Xiaoxiao; Aghdam, Yones Esmaeelzade; Farnam, Behnaz; Jafari, Hossein; Wang, Shuchun The numerical strategy of tempered fractional derivative in European double barrier option. (English) Zbl 07490685 Fractals 30, No. 1, Article ID 2240049, 10 p. (2022). MSC: 91G60 65M06 65H04 91G20 60G51 PDF BibTeX XML Cite \textit{C. Xie} et al., Fractals 30, No. 1, Article ID 2240049, 10 p. (2022; Zbl 07490685) Full Text: DOI OpenURL
Alsaedi, Ahmed; Al-Hutami, Hana; Ahmad, Bashir; Agarwal, Ravi P. Existence results for a coupled system of nonlinear fractional \(q\)-integro-difference equations with \(q\)-integral-coupled boundary conditions. (English) Zbl 07490678 Fractals 30, No. 1, Article ID 2240042, 19 p. (2022). MSC: 39A13 39A27 34A08 26A33 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Fractals 30, No. 1, Article ID 2240042, 19 p. (2022; Zbl 07490678) Full Text: DOI OpenURL
Al-Sadi, Wadhah; Wei, Zhouchao; Moroz, Irene; Abdullah, Tariq Q. S. Existence and stability theories for a coupled system involving p-Laplacian operator of a nonlinear Atangana-Baleanu fractional differential equations. (English) Zbl 07490673 Fractals 30, No. 1, Article ID 2240037, 17 p. (2022). MSC: 34A34 34A08 34D10 47N20 PDF BibTeX XML Cite \textit{W. Al-Sadi} et al., Fractals 30, No. 1, Article ID 2240037, 17 p. (2022; Zbl 07490673) Full Text: DOI OpenURL
Alrabaiah, Hussam; Rahman, Mati Ur; Mahariq, Ibrahim; Bushnaq, Samia; Arfan, Muhammad Fractional order analysis of HBV and HCV co-infection under ABC derivative. (English) Zbl 07490672 Fractals 30, No. 1, Article ID 2240036, 15 p. (2022). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{H. Alrabaiah} et al., Fractals 30, No. 1, Article ID 2240036, 15 p. (2022; Zbl 07490672) Full Text: DOI OpenURL
Momani, Shaher; Chauhan, R. P.; Kumar, Sunil; Hadid, Samir A theoretical study on fractional Ebola hemorrhagic fever model. (English) Zbl 07490668 Fractals 30, No. 1, Article ID 2240032, 21 p. (2022). MSC: 34C60 34A08 92D30 92C60 PDF BibTeX XML Cite \textit{S. Momani} et al., Fractals 30, No. 1, Article ID 2240032, 21 p. (2022; Zbl 07490668) Full Text: DOI OpenURL
Momani, Shaher; Chauhan, R. P.; Kumar, Sunil; Hadid, Samir A fractal-fractional 2019-nCOV model of major disaster for human life. (English) Zbl 07490667 Fractals 30, No. 1, Article ID 2240031, 16 p. (2022). MSC: 34C60 34A08 92C60 92D30 PDF BibTeX XML Cite \textit{S. Momani} et al., Fractals 30, No. 1, Article ID 2240031, 16 p. (2022; Zbl 07490667) Full Text: DOI OpenURL
Alrabaiah, Hussam Approximate solution of Fornberg-Whitham equation by modified homotopy perturbation method under non-singular fractional derivative. (English) Zbl 07490665 Fractals 30, No. 1, Article ID 2240029, 6 p. (2022). MSC: 65Mxx 26Axx 34Axx PDF BibTeX XML Cite \textit{H. Alrabaiah}, Fractals 30, No. 1, Article ID 2240029, 6 p. (2022; Zbl 07490665) Full Text: DOI OpenURL
Althobaiti, Saad; Dubey, Ravi Shanker; Prasad, Jyoti Geetesh Solution of local fractional generalized Fokker-Planck equation using local fractional Mohand Adomian decomposition method. (English) Zbl 07490664 Fractals 30, No. 1, Article ID 2240028, 9 p. (2022). MSC: 26Axx 35Rxx 34Axx PDF BibTeX XML Cite \textit{S. Althobaiti} et al., Fractals 30, No. 1, Article ID 2240028, 9 p. (2022; Zbl 07490664) Full Text: DOI OpenURL
Reunsumrit, Jiraporn; Sher, Muhammad; Shah, Kamal; Alreshidi, Nasser Aedh; Shutaywi, Meshal On fuzzy partial fractional order equations under fuzzified conditions. (English) Zbl 07490661 Fractals 30, No. 1, Article ID 2240025, 9 p. (2022). MSC: 35R13 35R11 35K05 PDF BibTeX XML Cite \textit{J. Reunsumrit} et al., Fractals 30, No. 1, Article ID 2240025, 9 p. (2022; Zbl 07490661) Full Text: DOI OpenURL
Din, Anwarud; Li, Yongjin; Yusuf, Abdullahi; Ali, Aliyu Isa Caputo type fractional operator applied to hepatitis B system. (English) Zbl 07490659 Fractals 30, No. 1, Article ID 2240023, 11 p. (2022). MSC: 34C60 34A08 92D30 92C60 34A45 34D05 PDF BibTeX XML Cite \textit{A. Din} et al., Fractals 30, No. 1, Article ID 2240023, 11 p. (2022; Zbl 07490659) Full Text: DOI OpenURL
Din, Anwarud; Li, Yongjin; Khan, Faiz Muhammad; Khan, Zia Ullah; Liu, Peijiang On analysis of fractional order mathematical model of hepatitis B using Atangana-Baleanu Caputo (ABC) derivative. (English) Zbl 07490653 Fractals 30, No. 1, Article ID 2240017, 18 p. (2022). MSC: 92D30 92C60 34A08 PDF BibTeX XML Cite \textit{A. Din} et al., Fractals 30, No. 1, Article ID 2240017, 18 p. (2022; Zbl 07490653) Full Text: DOI OpenURL
Akbar, Muhammad; Nawaz, Rashid; Ahsan, Sumbal; Sooppy Nisar, Kottakkaran; Shah, Kamal; Mahmoud, Emad E.; Alqarni, M. M. Fractional power series approach for the solution of fractional-order integro-differential equations. (English) Zbl 07490652 Fractals 30, No. 1, Article ID 2240016, 8 p. (2022). MSC: 45L05 45J05 34A08 26A33 65R20 PDF BibTeX XML Cite \textit{M. Akbar} et al., Fractals 30, No. 1, Article ID 2240016, 8 p. (2022; Zbl 07490652) Full Text: DOI OpenURL
Sooppy Nisar, Kottakkaran; Rahman, Mati Ur; Laouini, Ghaylen; Shutaywi, Meshal; Arfan, Muhammad On nonlinear fractional-order mathematical model of food-chain. (English) Zbl 07490650 Fractals 30, No. 1, Article ID 2240014, 12 p. (2022). MSC: 92D40 26A33 PDF BibTeX XML Cite \textit{K. Sooppy Nisar} et al., Fractals 30, No. 1, Article ID 2240014, 12 p. (2022; Zbl 07490650) Full Text: DOI OpenURL
Wu, Shanhe; Samraiz, Muhammad; Iqbal, Sajid; Rahman, Gauhar On a class of fractional Hardy-type inequalities. (English) Zbl 07490647 Fractals 30, No. 1, Article ID 2240011, 19 p. (2022). MSC: 26Dxx 26Axx 33Cxx PDF BibTeX XML Cite \textit{S. Wu} et al., Fractals 30, No. 1, Article ID 2240011, 19 p. (2022; Zbl 07490647) Full Text: DOI OpenURL
Riaz, Muhammad Bilal; Jarad, Fahd; Baleanu, Dumitru; Asgir, Maryam Theoretical study of MHD Maxwell fluid with combined effect of heat and mass transfer via local and nonlocal time derivatives. (English) Zbl 07490646 Fractals 30, No. 1, Article ID 2240010, 22 p. (2022). MSC: 76W05 76R10 80A19 26A33 PDF BibTeX XML Cite \textit{M. B. Riaz} et al., Fractals 30, No. 1, Article ID 2240010, 22 p. (2022; Zbl 07490646) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet Regarding new numerical results for the dynamical model of romantic relationships with fractional derivative. (English) Zbl 07490645 Fractals 30, No. 1, Article ID 2240009, 11 p. (2022). MSC: 34C60 34A08 91D99 34A45 PDF BibTeX XML Cite \textit{W. Gao} et al., Fractals 30, No. 1, Article ID 2240009, 11 p. (2022; Zbl 07490645) Full Text: DOI OpenURL
Butt, Saad Ihsan; Yousaf, Saba; Ahmad, Hijaz; Nofal, Taher A. Jensen-Mercer inequality and related results in the fractal sense with applications. (English) Zbl 07490644 Fractals 30, No. 1, Article ID 2240008, 11 p. (2022). MSC: 26Dxx 26Axx 47Axx PDF BibTeX XML Cite \textit{S. I. Butt} et al., Fractals 30, No. 1, Article ID 2240008, 11 p. (2022; Zbl 07490644) Full Text: DOI OpenURL
Ahmad, Sahibzada Waseem; Sarwar, Muhammad; Rahmat, Gul; Shah, Kamal; Ahmad, Hijaz; Mousa, Abd Allah A. Fractional order model for the coronavirus (COVID-19) in Wuhan, China. (English) Zbl 07490643 Fractals 30, No. 1, Article ID 2240007, 15 p. (2022). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{S. W. Ahmad} et al., Fractals 30, No. 1, Article ID 2240007, 15 p. (2022; Zbl 07490643) Full Text: DOI OpenURL
Ahmad, Bashir; Alghamdi, Badrah; Agarwal, Ravi P.; Alsaedi, Ahmed Riemann-Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions. (English) Zbl 07490638 Fractals 30, No. 1, Article ID 2240002, 11 p. (2022). MSC: 45J05 26A33 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Fractals 30, No. 1, Article ID 2240002, 11 p. (2022; Zbl 07490638) Full Text: DOI OpenURL
Aziz, Talha; ur Rehman, Mujeeb Generalized Mellin transform and its applications in fractional calculus. (English) Zbl 07490256 Comput. Appl. Math. 41, No. 3, Paper No. 88, 16 p. (2022). MSC: 39A05 39A99 26A33 PDF BibTeX XML Cite \textit{T. Aziz} and \textit{M. ur Rehman}, Comput. Appl. Math. 41, No. 3, Paper No. 88, 16 p. (2022; Zbl 07490256) Full Text: DOI OpenURL
Kucche, Kishor D.; Mali, Ashwini D. On the nonlinear \(\Psi\)-Hilfer hybrid fractional differential equations. (English) Zbl 07490254 Comput. Appl. Math. 41, No. 3, Paper No. 86, 23 p. (2022). MSC: 34A38 26A33 34A12 34A40 PDF BibTeX XML Cite \textit{K. D. Kucche} and \textit{A. D. Mali}, Comput. Appl. Math. 41, No. 3, Paper No. 86, 23 p. (2022; Zbl 07490254) Full Text: DOI arXiv OpenURL
Khajehnasiri, A. A.; Ezzati, R. Boubaker polynomials and their applications for solving fractional two-dimensional nonlinear partial integro-differential Volterra integral equations. (English) Zbl 07490250 Comput. Appl. Math. 41, No. 2, Paper No. 82, 18 p. (2022). MSC: 26A33 65Gxx 45G10 PDF BibTeX XML Cite \textit{A. A. Khajehnasiri} and \textit{R. Ezzati}, Comput. Appl. Math. 41, No. 2, Paper No. 82, 18 p. (2022; Zbl 07490250) Full Text: DOI OpenURL
Koundal, Reena; Kumar, Rakesh; Srivastava, K.; Baleanu, D. Lucas wavelet scheme for fractional Bagley-Torvik equations: Gauss-Jacobi approach. (English) Zbl 07489886 Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 3, 16 p. (2022). MSC: 65L60 65T60 34A08 PDF BibTeX XML Cite \textit{R. Koundal} et al., Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 3, 16 p. (2022; Zbl 07489886) Full Text: DOI OpenURL
Cabré, Xavier; Dipierro, Serena; Valdinoci, Enrico The Bernstein technique for integro-differential equations. (English) Zbl 07488601 Arch. Ration. Mech. Anal. 243, No. 3, 1597-1652 (2022). MSC: 35B45 35B65 35R11 PDF BibTeX XML Cite \textit{X. Cabré} et al., Arch. Ration. Mech. Anal. 243, No. 3, 1597--1652 (2022; Zbl 07488601) Full Text: DOI arXiv OpenURL
Dubey, Ved Prakash; Singh, Jagdev; Alshehri, Ahmed M.; Dubey, Sarvesh; Kumar, Devendra An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations. (English) Zbl 07487731 Math. Comput. Simul. 196, 296-318 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{V. P. Dubey} et al., Math. Comput. Simul. 196, 296--318 (2022; Zbl 07487731) Full Text: DOI OpenURL
Zaky, M. A.; Hendy, A. S.; Suragan, D. A note on a class of Caputo fractional differential equations with respect to another function. (English) Zbl 07487730 Math. Comput. Simul. 196, 289-295 (2022). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{M. A. Zaky} et al., Math. Comput. Simul. 196, 289--295 (2022; Zbl 07487730) Full Text: DOI OpenURL
Li, Zhiqiang Asymptotics and large time behaviors of fractional evolution equations with temporal \(\psi \)-Caputo derivative. (English) Zbl 07487726 Math. Comput. Simul. 196, 210-231 (2022). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{Z. Li}, Math. Comput. Simul. 196, 210--231 (2022; Zbl 07487726) Full Text: DOI OpenURL
Ali, Saeed M.; Shatanawi, Wasfi; Kassim, Mohammed D.; Abdo, Mohammed S.; Saleh, S. Investigating a class of generalized Caputo-type fractional integro-differential equations. (English) Zbl 07487589 J. Funct. Spaces 2022, Article ID 8103046, 9 p. (2022). MSC: 45M10 26A33 47H10 47N20 PDF BibTeX XML Cite \textit{S. M. Ali} et al., J. Funct. Spaces 2022, Article ID 8103046, 9 p. (2022; Zbl 07487589) Full Text: DOI OpenURL
Li, Ning; Gu, Haibo; Chen, Yiru BVP for Hadamard sequential fractional hybrid differential inclusions. (English) Zbl 07487572 J. Funct. Spaces 2022, Article ID 4042483, 27 p. (2022). Reviewer: Aurelian Cernea (Bucureşti) MSC: 34A60 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{N. Li} et al., J. Funct. Spaces 2022, Article ID 4042483, 27 p. (2022; Zbl 07487572) Full Text: DOI OpenURL
Al-Refai, Mohammed; Luchko, Yuri Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. (English) Zbl 07486740 J. Differ. Equations 319, 312-324 (2022). MSC: 26A33 33E12 35S10 45K05 PDF BibTeX XML Cite \textit{M. Al-Refai} and \textit{Y. Luchko}, J. Differ. Equations 319, 312--324 (2022; Zbl 07486740) Full Text: DOI OpenURL
Chen, Xuehui; Zhu, Hongli; Zhang, Xinru; Zhao, Lutao A novel time-varying FIGARCH model for improving volatility predictions. (English) Zbl 07485888 Physica A 589, Article ID 126635, 14 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{X. Chen} et al., Physica A 589, Article ID 126635, 14 p. (2022; Zbl 07485888) Full Text: DOI OpenURL