Shah, Firdous A.; Tantary, Azhar Y. Multi-dimensional linear canonical transform with applications to sampling and multiplicative filtering. (English) Zbl 07543055 Multidimensional Syst. Signal Process. 33, No. 2, 621-650 (2022). MSC: 42B10 53D22 65R10 26A33 94A20 94A12 93E11 94-XX PDF BibTeX XML Cite \textit{F. A. Shah} and \textit{A. Y. Tantary}, Multidimensional Syst. Signal Process. 33, No. 2, 621--650 (2022; Zbl 07543055) Full Text: DOI OpenURL
Mukherjee, Suman; Parui, Sanjay Weighted inequalities for multilinear fractional operators in Dunkl setting. (English) Zbl 07540340 J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 34, 31 p. (2022). MSC: 42B10 42B25 47G10 26D15 PDF BibTeX XML Cite \textit{S. Mukherjee} and \textit{S. Parui}, J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 34, 31 p. (2022; Zbl 07540340) Full Text: DOI OpenURL
Jaming, Philippe A simple observation on the uncertainty principle for the fractional Fourier transform. (English) Zbl 07533855 J. Fourier Anal. Appl. 28, No. 3, Paper No. 51, 8 p. (2022). MSC: 42A38 PDF BibTeX XML Cite \textit{P. Jaming}, J. Fourier Anal. Appl. 28, No. 3, Paper No. 51, 8 p. (2022; Zbl 07533855) Full Text: DOI OpenURL
Verma, Amit K.; Gupta, Bivek A note on continuous fractional wavelet transform in \(\mathbb{R}^n\). (English) Zbl 07526031 Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 2, Article ID 2150050, 29 p. (2022). Reviewer: Yuri A. Farkov (Moskva) MSC: 42C40 46E30 46F05 PDF BibTeX XML Cite \textit{A. K. Verma} and \textit{B. Gupta}, Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 2, Article ID 2150050, 29 p. (2022; Zbl 07526031) Full Text: DOI OpenURL
Poulou, Maria Eleni; Filippakis, Michael E. Global attractor of a dissipative fractional Klein Gordon Schrödinger system. (English) Zbl 07522516 J. Dyn. Differ. Equations 34, No. 2, 945-960 (2022). MSC: 26-XX 35-XX PDF BibTeX XML Cite \textit{M. E. Poulou} and \textit{M. E. Filippakis}, J. Dyn. Differ. Equations 34, No. 2, 945--960 (2022; Zbl 07522516) Full Text: DOI OpenURL
Mahato, Kanailal; Singh, Prashant Hardy type uncertainty principles for fractional Hankel transform. (English) Zbl 07506486 J. Pseudo-Differ. Oper. Appl. 13, No. 2, Paper No. 19, 11 p. (2022). MSC: 44A15 42A38 43A32 26D10 33C45 PDF BibTeX XML Cite \textit{K. Mahato} and \textit{P. Singh}, J. Pseudo-Differ. Oper. Appl. 13, No. 2, Paper No. 19, 11 p. (2022; Zbl 07506486) Full Text: DOI OpenURL
Colombo, Fabrizio; De Martino, Antonino; Qian, Tao; Sabadini, Irene The Poisson kernel and the Fourier transform of the slice monogenic Cauchy kernels. (English) Zbl 07496951 J. Math. Anal. Appl. 512, No. 1, Article ID 126115, 23 p. (2022). MSC: 30G35 PDF BibTeX XML Cite \textit{F. Colombo} et al., J. Math. Anal. Appl. 512, No. 1, Article ID 126115, 23 p. (2022; Zbl 07496951) Full Text: DOI OpenURL
Li, Xuejun; Mou, Jun; Cao, Yinghong; Banerjee, Santo An optical image encryption algorithm based on a fractional-order laser hyperchaotic system. (English) Zbl 07491278 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 3, Article ID 2250035, 25 p. (2022). MSC: 78A60 94A05 42A38 26A33 35R11 35Q60 PDF BibTeX XML Cite \textit{X. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 3, Article ID 2250035, 25 p. (2022; Zbl 07491278) Full Text: DOI OpenURL
Wang, Shui-Hua; Karaca, Yeliz; Zhang, Xin; Zhang, Yu-Dong Secondary pulmonary tuberculosis recognition by rotation angle vector grid-based fractional Fourier entropy. (English) Zbl 07490683 Fractals 30, No. 1, Article ID 2240047, 17 p. (2022). MSC: 92C55 42A38 26A33 PDF BibTeX XML Cite \textit{S.-H. Wang} et al., Fractals 30, No. 1, Article ID 2240047, 17 p. (2022; Zbl 07490683) Full Text: DOI OpenURL
Kamalakkannan, R.; Roopkumar, R.; Zayed, A. On the extension of the coupled fractional Fourier transform and its properties. (English) Zbl 07472681 Integral Transforms Spec. Funct. 33, No. 1, 65-80 (2022). MSC: 42B10 42A38 44A15 44A35 PDF BibTeX XML Cite \textit{R. Kamalakkannan} et al., Integral Transforms Spec. Funct. 33, No. 1, 65--80 (2022; Zbl 07472681) Full Text: DOI OpenURL
Ghaffari, M.; Allahviranloo, T.; Abbasbandy, S.; Azhini, M. On the fuzzy solutions of time-fractional problems. (English) Zbl 07547092 Iran. J. Fuzzy Syst. 18, No. 3, 51-66 (2021). MSC: 34Axx 35Rxx 26Exx PDF BibTeX XML Cite \textit{M. Ghaffari} et al., Iran. J. Fuzzy Syst. 18, No. 3, 51--66 (2021; Zbl 07547092) Full Text: DOI OpenURL
Toksoy, Erdem; Sandikçi, Ayşe Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform. (English) Zbl 07517251 Hacet. J. Math. Stat. 50, No. 6, 1620-1635 (2021). MSC: 42A38 43A15 47B07 PDF BibTeX XML Cite \textit{E. Toksoy} and \textit{A. Sandikçi}, Hacet. J. Math. Stat. 50, No. 6, 1620--1635 (2021; Zbl 07517251) Full Text: DOI OpenURL
Li, Yuan-Min; Wei, Deyun; Zhang, Lina Double-encrypted watermarking algorithm based on cosine transform and fractional Fourier transform in invariant wavelet domain. (English) Zbl 07508101 Inf. Sci. 551, 205-227 (2021). MSC: 94A62 94A60 42A38 42C40 PDF BibTeX XML Cite \textit{Y.-M. Li} et al., Inf. Sci. 551, 205--227 (2021; Zbl 07508101) Full Text: DOI OpenURL
Li, Xiaomin; Wang, Huali; Luo, Haichao A compressed sampling receiver based on modulated wideband converter and a parameter estimation algorithm for fractional bandlimited LFM signals. (English) Zbl 07496137 Circuits Syst. Signal Process. 40, No. 2, 918-957 (2021). MSC: 94Cxx 94A12 PDF BibTeX XML Cite \textit{X. Li} et al., Circuits Syst. Signal Process. 40, No. 2, 918--957 (2021; Zbl 07496137) Full Text: DOI OpenURL
Rajakumar, Roopkumar Quaternionic short-time fractional Fourier transform. (English) Zbl 1484.42009 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 100, 13 p. (2021). MSC: 42A38 46S10 44A15 44A35 26A33 PDF BibTeX XML Cite \textit{R. Rajakumar}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 100, 13 p. (2021; Zbl 1484.42009) Full Text: DOI OpenURL
Gil-Alana, Luis A.; Yaya, OlaOluwa S. Testing fractional unit roots with non-linear smooth break approximations using Fourier functions. (English) Zbl 07484669 J. Appl. Stat. 48, No. 13-15, 2542-2559 (2021). MSC: 62Pxx PDF BibTeX XML Cite \textit{L. A. Gil-Alana} and \textit{O. S. Yaya}, J. Appl. Stat. 48, No. 13--15, 2542--2559 (2021; Zbl 07484669) Full Text: DOI OpenURL
Srivastava, H. M.; Chauhan, Manmohan Singh; Upadhyay, S. K. Asymptotic series of a general symbol and pseudo-differential operators involving the Kontorovich-Lebedev transform. (English) Zbl 07483230 J. Nonlinear Convex Anal. 22, No. 11, 2461-2478 (2021). MSC: 44A15 35S05 46F12 46E35 33C10 44A35 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Nonlinear Convex Anal. 22, No. 11, 2461--2478 (2021; Zbl 07483230) Full Text: Link OpenURL
Bekbolat, Bayan; Tokmagambetov, Niyaz Cauchy problem for the Jacobi fractional heat equation. (English) Zbl 07481088 Mat. Zh. 21, No. 3, 16-26 (2021). MSC: 35R11 35B44 35A01 PDF BibTeX XML Cite \textit{B. Bekbolat} and \textit{N. Tokmagambetov}, Mat. Zh. 21, No. 3, 16--26 (2021; Zbl 07481088) OpenURL
Verma, Amit K.; Gupta, Bivek Certain properties of continuous fractional wavelet transform on Hardy space and Morrey space. (English) Zbl 1484.42034 Opusc. Math. 41, No. 5, 701-723 (2021). Reviewer: Yankui Sun (Beijing) MSC: 42C40 42B10 46E30 PDF BibTeX XML Cite \textit{A. K. Verma} and \textit{B. Gupta}, Opusc. Math. 41, No. 5, 701--723 (2021; Zbl 1484.42034) Full Text: DOI arXiv OpenURL
Dulf, Eva-H.; Ionescu, Clara-M. Risk related prediction for recurrent stroke and post-stroke epilepsy using fractional Fourier transform analysis of EEG signals. (English) Zbl 1485.92059 Awrejcewicz, Jan (ed.), Perspectives in dynamical systems II: mathematical and numerical approaches. Selected papers based on the presentations at the 15th international conference on dynamical systems – theory and applications, DSTA, Łódź, Poland, December 2–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 363, 69-78 (2021). MSC: 92C55 42A38 PDF BibTeX XML Cite \textit{E.-H. Dulf} and \textit{C.-M. Ionescu}, Springer Proc. Math. Stat. 363, 69--78 (2021; Zbl 1485.92059) Full Text: DOI OpenURL
Li, Zunfeng; Shi, Haipan; Qiao, Yuying Two-sided fractional quaternion Fourier transform and its application. (English) Zbl 07465099 J. Inequal. Appl. 2021, Paper No. 121, 15 p. (2021). MSC: 42Bxx 15Axx 11Rxx PDF BibTeX XML Cite \textit{Z. Li} et al., J. Inequal. Appl. 2021, Paper No. 121, 15 p. (2021; Zbl 07465099) Full Text: DOI OpenURL
Sachan, Dheerandra Shanker; Jaloree, Shailesh Integral transforms of generalized \(m\)-series. (English) Zbl 07458967 J. Fract. Calc. Appl. 12, No. 1, 213-222 (2021). MSC: 33C20 33E12 PDF BibTeX XML Cite \textit{D. S. Sachan} and \textit{S. Jaloree}, J. Fract. Calc. Appl. 12, No. 1, 213--222 (2021; Zbl 07458967) Full Text: Link OpenURL
Waphare, B. B.; Pansare, P. D. Generalized pseudo-differential operators involving fractional Fourier transform. (English) Zbl 07450970 Nonlinear Funct. Anal. Appl. 26, No. 1, 105-115 (2021). MSC: 47G30 46F12 PDF BibTeX XML Cite \textit{B. B. Waphare} and \textit{P. D. Pansare}, Nonlinear Funct. Anal. Appl. 26, No. 1, 105--115 (2021; Zbl 07450970) Full Text: Link OpenURL
Dubey, Jitendra Kumar; Pandey, Pradeep Kumar; Upadhyay, S. K. Characterization of product of pseudo-differential operators involving fractional Fourier transform. (English) Zbl 07425438 J. Indian Math. Soc., New Ser. 88, No. 1-2, 60-71 (2021). MSC: 35S05 47A53 47G30 PDF BibTeX XML Cite \textit{J. K. Dubey} et al., J. Indian Math. Soc., New Ser. 88, No. 1--2, 60--71 (2021; Zbl 07425438) Full Text: DOI OpenURL
Arafa, Anas A. M.; Hagag, Ahmed M. Sh. A different approach for study some fractional evolution equations. (English) Zbl 1476.35293 Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021). MSC: 35R11 35A22 41A58 PDF BibTeX XML Cite \textit{A. A. M. Arafa} and \textit{A. M. Sh. Hagag}, Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021; Zbl 1476.35293) Full Text: DOI OpenURL
Ji, Un Cig; Lee, Mi Ra; Ma, Peng Cheng Fractional Langevin type equations for white noise distributions. (English) Zbl 07414217 Fract. Calc. Appl. Anal. 24, No. 4, 1160-1192 (2021). MSC: 60H40 34A08 60H15 26A33 46F25 PDF BibTeX XML Cite \textit{U. C. Ji} et al., Fract. Calc. Appl. Anal. 24, No. 4, 1160--1192 (2021; Zbl 07414217) Full Text: DOI OpenURL
Agarwal, Ritu; Kritika; Purohit, Sunil Dutt; Kumar, Devendra Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. (English) Zbl 1473.35586 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3387-3399 (2021). MSC: 35Q92 92C37 PDF BibTeX XML Cite \textit{R. Agarwal} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3387--3399 (2021; Zbl 1473.35586) Full Text: DOI OpenURL
Mahato, Kanailal; Singh, Prashant Continuity of the fractional Hankel wavelet transform on Gelfand-Shilov spaces. (English) Zbl 1480.42043 Rocky Mt. J. Math. 51, No. 3, 963-972 (2021). Reviewer: Azhar Y. Tantary (Srinagar) MSC: 42C40 43A32 46F12 46F05 PDF BibTeX XML Cite \textit{K. Mahato} and \textit{P. Singh}, Rocky Mt. J. Math. 51, No. 3, 963--972 (2021; Zbl 1480.42043) Full Text: DOI OpenURL
Tassaddiq, Asifa A new representation of the extended \(k\)-gamma function with applications. (English) Zbl 1481.33004 Math. Methods Appl. Sci. 44, No. 14, 11174-11195 (2021). Reviewer: Ahmad Mohammad (Pune) MSC: 33B15 26A33 PDF BibTeX XML Cite \textit{A. Tassaddiq}, Math. Methods Appl. Sci. 44, No. 14, 11174--11195 (2021; Zbl 1481.33004) Full Text: DOI OpenURL
Chen, Wei; Fu, Zunwei; Grafakos, Loukas; Wu, Yue Fractional Fourier transforms on \(L^p\) and applications. (English) Zbl 1471.42009 Appl. Comput. Harmon. Anal. 55, 71-96 (2021). MSC: 42A38 42B15 PDF BibTeX XML Cite \textit{W. Chen} et al., Appl. Comput. Harmon. Anal. 55, 71--96 (2021; Zbl 1471.42009) Full Text: DOI arXiv OpenURL
Ganesh, Anumanthappa; Govindan, Vediyappan; Lee, Jung Rye; Mohanapriya, Arusamy; Park, Choonkil Mittag-Leffler-Hyers-Ulam stability of delay fractional differential equation via fractional Fourier transform. (English) Zbl 1476.34022 Result. Math. 76, No. 4, Paper No. 180, 17 p. (2021). MSC: 34A08 34D10 34K37 34K27 42B10 PDF BibTeX XML Cite \textit{A. Ganesh} et al., Result. Math. 76, No. 4, Paper No. 180, 17 p. (2021; Zbl 1476.34022) Full Text: DOI OpenURL
Kamalakkannan, Ramanathan; Roopkumar, Rajakumar; Zayed, Ahmed Short time coupled fractional Fourier transform and the uncertainty principle. (English) Zbl 07382475 Fract. Calc. Appl. Anal. 24, No. 3, 667-688 (2021). MSC: 44A15 42A38 33C50 42B10 PDF BibTeX XML Cite \textit{R. Kamalakkannan} et al., Fract. Calc. Appl. Anal. 24, No. 3, 667--688 (2021; Zbl 07382475) Full Text: DOI OpenURL
Vieira, N.; Rodrigues, M. M.; Ferreira, M. Time-fractional telegraph equation of distributed order in higher dimensions. (English) Zbl 1471.35313 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105925, 32 p. (2021). MSC: 35R11 35L20 26A33 33C60 35C15 35A22 35S10 PDF BibTeX XML Cite \textit{N. Vieira} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105925, 32 p. (2021; Zbl 1471.35313) Full Text: DOI OpenURL
Srivastava, Hari M.; Shah, Firdous A.; Lone, Waseem Z. Fractional nonuniform multiresolution analysis in \(L^2(\mathbb{R})\). (English) Zbl 1469.42032 Math. Methods Appl. Sci. 44, No. 11, 9351-9372 (2021). MSC: 42C40 42C15 47G10 94A12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Math. Methods Appl. Sci. 44, No. 11, 9351--9372 (2021; Zbl 1469.42032) Full Text: DOI OpenURL
Kroumi, Anis Boundedness of integral operators associated with the Kontorovich-Lebedev transform in the Lebesgue spaces type. (English) Zbl 1468.42003 Asian-Eur. J. Math. 14, No. 5, Article ID 2150081, 16 p. (2021). MSC: 42A38 33C10 42B25 44A35 PDF BibTeX XML Cite \textit{A. Kroumi}, Asian-Eur. J. Math. 14, No. 5, Article ID 2150081, 16 p. (2021; Zbl 1468.42003) Full Text: DOI OpenURL
Durdiev, Durdimurod; Shishkina, Elina; Sitnik, Sergey The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space. (English) Zbl 1468.35231 Lobachevskii J. Math. 42, No. 6, 1264-1273 (2021). MSC: 35R11 35K20 35R09 PDF BibTeX XML Cite \textit{D. Durdiev} et al., Lobachevskii J. Math. 42, No. 6, 1264--1273 (2021; Zbl 1468.35231) Full Text: DOI arXiv OpenURL
Wang, Qingkang Local well-posedness solution of fractional Laplacian exponential nonlinear thermal equations. (Chinese. English summary) Zbl 1474.35238 Adv. Math., Beijing 50, No. 1, 125-136 (2021). MSC: 35J05 35K05 PDF BibTeX XML Cite \textit{Q. Wang}, Adv. Math., Beijing 50, No. 1, 125--136 (2021; Zbl 1474.35238) Full Text: DOI OpenURL
Adhikari, Saswata; Anoop, V. P.; Parui, Sanjay Existence of extremals of Dunkl-type Sobolev inequality and of Stein-Weiss inequality for Dunkl Riesz potential. (English) Zbl 1465.42012 Complex Anal. Oper. Theory 15, No. 2, Paper No. 28, 35 p. (2021). MSC: 42B10 33C52 35R11 35A23 PDF BibTeX XML Cite \textit{S. Adhikari} et al., Complex Anal. Oper. Theory 15, No. 2, Paper No. 28, 35 p. (2021; Zbl 1465.42012) Full Text: DOI arXiv OpenURL
Lin, Guoxing Describing NMR relaxation by effective phase diffusion equation. (English) Zbl 1469.78002 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105825, 15 p. (2021). MSC: 78A25 33E12 60G60 44A10 42A38 34A08 PDF BibTeX XML Cite \textit{G. Lin}, Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105825, 15 p. (2021; Zbl 1469.78002) Full Text: DOI arXiv OpenURL
Hu, Dongdong; Cai, Wenjun; Fu, Yayun; Wang, Yushun Fast dissipation-preserving difference scheme for nonlinear generalized wave equations with the integral fractional Laplacian. (English) Zbl 1471.65102 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105786, 24 p. (2021). MSC: 65M06 65M12 65T50 65F08 65F10 35L05 35R11 PDF BibTeX XML Cite \textit{D. Hu} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105786, 24 p. (2021; Zbl 1471.65102) Full Text: DOI OpenURL
Keith, Brendan; Khristenko, Ustim; Wohlmuth, Barbara A fractional PDE model for turbulent velocity fields near solid walls. (English) Zbl 1485.76055 J. Fluid Mech. 916, Paper No. A21, 30 p. (2021). MSC: 76F40 76F55 76M22 26A33 PDF BibTeX XML Cite \textit{B. Keith} et al., J. Fluid Mech. 916, Paper No. A21, 30 p. (2021; Zbl 1485.76055) Full Text: DOI arXiv OpenURL
Lin, Gwo Dong; Hu, Chin-Yuan Formulas of absolute moments. (English) Zbl 1459.60042 Sankhyā, Ser. A 83, No. 1, 476-495 (2021). MSC: 60E10 42A38 42A70 PDF BibTeX XML Cite \textit{G. D. Lin} and \textit{C.-Y. Hu}, Sankhyā, Ser. A 83, No. 1, 476--495 (2021; Zbl 1459.60042) Full Text: DOI OpenURL
Aghili, A. Solution to linear KdV and nonlinear space fractional PDEs. (English) Zbl 07339848 Bol. Soc. Parana. Mat. (3) 39, No. 2, 63-73 (2021). MSC: 35R11 26A33 34A08 34K37 PDF BibTeX XML Cite \textit{A. Aghili}, Bol. Soc. Parana. Mat. (3) 39, No. 2, 63--73 (2021; Zbl 07339848) Full Text: Link OpenURL
Oukili, Sara; Sifi, Mohamed Riesz potentials for the \(\kappa\)-generalized Fourier transform. (English) Zbl 1461.42013 J. Lie Theory 31, No. 1, 287-300 (2021). MSC: 42B25 42B10 PDF BibTeX XML Cite \textit{S. Oukili} and \textit{M. Sifi}, J. Lie Theory 31, No. 1, 287--300 (2021; Zbl 1461.42013) Full Text: Link OpenURL
Lian, Pan Quaternion and fractional Fourier transform in higher dimension. (English) Zbl 1462.42017 Appl. Math. Comput. 389, Article ID 125585, 13 p. (2021). MSC: 42B10 42A05 44A12 PDF BibTeX XML Cite \textit{P. Lian}, Appl. Math. Comput. 389, Article ID 125585, 13 p. (2021; Zbl 1462.42017) Full Text: DOI OpenURL
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift. (English) Zbl 1475.35432 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). Reviewer: Robert Plato (Siegen) MSC: 35R60 26A33 35A01 35A02 35R11 35R30 35R25 49M37 60G60 60H40 60J65 65M30 65M32 65T50 90C25 35K20 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 1475.35432) Full Text: DOI arXiv OpenURL
Ahmad, Owais; Sheikh, Neyaz A.; Shah, Firdous A. Fractional multiresolution analysis and associated scaling functions in \(L^2(\mathbb{R})\). (English) Zbl 1461.42024 Anal. Math. Phys. 11, No. 2, Paper No. 47, 21 p. (2021). Reviewer: Ghanshyam Bhatt (Nashville) MSC: 42C40 42C15 41A17 46F12 26A33 PDF BibTeX XML Cite \textit{O. Ahmad} et al., Anal. Math. Phys. 11, No. 2, Paper No. 47, 21 p. (2021; Zbl 1461.42024) Full Text: DOI arXiv OpenURL
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 1475.65081 Appl. Numer. Math. 161, 244-274 (2021). Reviewer: Michael Plum (Karlsruhe) MSC: 65M06 65N06 65M12 65M15 42C10 41A50 35R11 PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 1475.65081) Full Text: DOI OpenURL
Xing, Zhiyong; Wen, Liping; Xiao, Hanyu A fourth-order conservative difference scheme for the Riesz space-fractional Sine-Gordon equations and its fast implementation. (English) Zbl 1459.65161 Appl. Numer. Math. 159, 221-238 (2021). MSC: 65M06 65M12 65H10 65T50 15B05 35R11 35Q53 PDF BibTeX XML Cite \textit{Z. Xing} et al., Appl. Numer. Math. 159, 221--238 (2021; Zbl 1459.65161) Full Text: DOI OpenURL
Xue, ZhangNa; Liu, JianLin; Tian, XiaoGeng; Yu, YaJun Thermal shock fracture associated with a unified fractional heat conduction. (English) Zbl 1476.74137 Eur. J. Mech., A, Solids 85, Article ID 104129, 11 p. (2021). MSC: 74R10 74F05 74G70 PDF BibTeX XML Cite \textit{Z. Xue} et al., Eur. J. Mech., A, Solids 85, Article ID 104129, 11 p. (2021; Zbl 1476.74137) Full Text: DOI OpenURL
Mahor, Teekam Chand; Mishra, Rajshree; Jain, Renu Analytical solutions of linear fractional partial differential equations using fractional Fourier transform. (English) Zbl 1457.42011 J. Comput. Appl. Math. 385, Article ID 113202, 9 p. (2021). MSC: 42A38 35R11 33E12 26A33 PDF BibTeX XML Cite \textit{T. C. Mahor} et al., J. Comput. Appl. Math. 385, Article ID 113202, 9 p. (2021; Zbl 1457.42011) Full Text: DOI OpenURL
Hu, Jingwei; Qi, Kunlun A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels. (English) Zbl 07508421 J. Comput. Phys. 423, Article ID 109806, 21 p. (2020). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{J. Hu} and \textit{K. Qi}, J. Comput. Phys. 423, Article ID 109806, 21 p. (2020; Zbl 07508421) Full Text: DOI OpenURL
Unyong, Bundit; Mohanapriya, Arusamy; Ganesh, Anumanthappa; Rajchakit, Grienggrai; Govindan, Vediyappan; Vadivel, R.; Gunasekaran, Nallappan; Lim, Chee Peng Fractional Fourier transform and stability of fractional differential equation on Lizorkin space. (English) Zbl 07507608 Adv. Difference Equ. 2020, Paper No. 578, 22 p. (2020). MSC: 34A08 47N20 44A40 42A16 PDF BibTeX XML Cite \textit{B. Unyong} et al., Adv. Difference Equ. 2020, Paper No. 578, 22 p. (2020; Zbl 07507608) Full Text: DOI OpenURL
Ji, Fang Research on complexity evolution of marketing evaluation data based on fractional calculus. (English) Zbl 07505779 Chaos Solitons Fractals 131, Article ID 109416, 5 p. (2020). MSC: 34C15 37D45 65Txx 93Bxx 94Axx PDF BibTeX XML Cite \textit{F. Ji}, Chaos Solitons Fractals 131, Article ID 109416, 5 p. (2020; Zbl 07505779) Full Text: DOI OpenURL
Hammachukiattikul, Porpattama; Mohanapriya, Arusamy; Ganesh, Anumanthappa; Rajchakit, Grienggrai; Govindan, Vediyappan; Gunasekaran, Nallappan; Lim, Chee Peng A study on fractional differential equations using the fractional Fourier transform. (English) Zbl 1485.35387 Adv. Difference Equ. 2020, Paper No. 691, 22 p. (2020). MSC: 35R11 33E12 44A15 PDF BibTeX XML Cite \textit{P. Hammachukiattikul} et al., Adv. Difference Equ. 2020, Paper No. 691, 22 p. (2020; Zbl 1485.35387) Full Text: DOI OpenURL
Liu, Zhengguang; Li, Xiaoli; Zhang, Xuhao A fast high-order compact difference method for the fractal mobile/immobile transport equation. (English) Zbl 1480.65216 Int. J. Comput. Math. 97, No. 9, 1860-1883 (2020). MSC: 65M06 65M12 65M15 26A33 PDF BibTeX XML Cite \textit{Z. Liu} et al., Int. J. Comput. Math. 97, No. 9, 1860--1883 (2020; Zbl 1480.65216) Full Text: DOI OpenURL
Fang, Zhi-Wei; Sun, Hai-Wei; Wei, Hui-Qin An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients. (English) Zbl 07475941 Int. J. Comput. Math. 97, No. 3, 523-545 (2020). MSC: 65-XX 35R05 65F08 65F10 65M06 PDF BibTeX XML Cite \textit{Z.-W. Fang} et al., Int. J. Comput. Math. 97, No. 3, 523--545 (2020; Zbl 07475941) Full Text: DOI OpenURL
Li, Yulong Characterizations of fractional Sobolev spaces from the perspective of Riemann-Liouville operators. (English) Zbl 07458935 J. Fract. Calc. Appl. 11, No. 2, 102-110 (2020). MSC: 26A33 34A08 46N20 PDF BibTeX XML Cite \textit{Y. Li}, J. Fract. Calc. Appl. 11, No. 2, 102--110 (2020; Zbl 07458935) Full Text: arXiv Link OpenURL
Yao, Aijia; Zhang, Yanhui; Li, Mingyang; Kang, Rui The option pricing based on fast fractional Fourier transform — Take 50ETF options in Shanghai stock exchange as an example. (Chinese. English summary) Zbl 1474.91219 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 6, 614-620 (2020). MSC: 91G20 42A38 PDF BibTeX XML Cite \textit{A. Yao} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 6, 614--620 (2020; Zbl 1474.91219) Full Text: DOI OpenURL
Kumar, Manish A new class of pseudo-differential operators involving linear canonical transform. (English) Zbl 1477.46048 Int. J. Appl. Comput. Math. 6, No. 6, Paper No. 165, 23 p. (2020). MSC: 46F12 47G30 35K05 35L05 PDF BibTeX XML Cite \textit{M. Kumar}, Int. J. Appl. Comput. Math. 6, No. 6, Paper No. 165, 23 p. (2020; Zbl 1477.46048) Full Text: DOI OpenURL
Li, Xiaolin; Zhang, Wenjun Two-dimensional DOA estimation for wideband LFM signals based on nested arrays. (Chinese. English summary) Zbl 1474.94045 J. Shanghai Univ., Nat. Sci. 26, No. 4, 506-517 (2020). MSC: 94A12 PDF BibTeX XML Cite \textit{X. Li} and \textit{W. Zhang}, J. Shanghai Univ., Nat. Sci. 26, No. 4, 506--517 (2020; Zbl 1474.94045) Full Text: DOI OpenURL
Fu, Zhiyuan; Huang, Likun; Yang, Heju The properties and applications of the fractional Fourier transform in quaternion analysis. (Chinese. English summary) Zbl 1474.42025 Appl. Math., Ser. A (Chin. Ed.) 35, No. 3, 343-355 (2020). MSC: 42A38 42B10 26A33 PDF BibTeX XML Cite \textit{Z. Fu} et al., Appl. Math., Ser. A (Chin. Ed.) 35, No. 3, 343--355 (2020; Zbl 1474.42025) Full Text: DOI OpenURL
Singha, Neelam Implementation of fractional optimal control problems in real-world applications. (English) Zbl 07329886 Fract. Calc. Appl. Anal. 23, No. 6, 1783-1796 (2020). MSC: 65-XX 26A33 33E12 35A22 35R11 42A38 44A10 47G10 PDF BibTeX XML Cite \textit{N. Singha}, Fract. Calc. Appl. Anal. 23, No. 6, 1783--1796 (2020; Zbl 07329886) Full Text: DOI OpenURL
Almushaira, Mustafa; Liu, Fei Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations. (English) Zbl 1460.35306 SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 45, 28 p. (2020). MSC: 35Q41 35R11 65M06 65M12 65N06 65T50 PDF BibTeX XML Cite \textit{M. Almushaira} and \textit{F. Liu}, SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 45, 28 p. (2020; Zbl 1460.35306) Full Text: DOI OpenURL
Kumar, Rajneesh; Singh, Kulwinder; Pathania, Devinder Effects of Hall current and rotation in a fractional ordered magneto-micropolar thermoviscoelastic half-space due to ramp-type heat. (English) Zbl 1459.74048 Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 23, 20 p. (2020). MSC: 74F05 74F15 74A35 74H15 74S40 PDF BibTeX XML Cite \textit{R. Kumar} et al., Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 23, 20 p. (2020; Zbl 1459.74048) Full Text: DOI OpenURL
Kochubei, Anatoly N. Non-Archimedean radial calculus: Volterra operator and Laplace transform. (English) Zbl 07309907 Integral Equations Oper. Theory 92, No. 6, Paper No. 44, 16 p. (2020). MSC: 47G10 11S80 35S10 43A32 PDF BibTeX XML Cite \textit{A. N. Kochubei}, Integral Equations Oper. Theory 92, No. 6, Paper No. 44, 16 p. (2020; Zbl 07309907) Full Text: DOI arXiv OpenURL
Chen, Minghua; Ekström, Sven-Erik; Serra-Capizzano, Stefano A multigrid method for nonlocal problems: non-diagonally dominant or Toeplitz-plus-tridiagonal systems. (English) Zbl 1461.65236 SIAM J. Matrix Anal. Appl. 41, No. 4, 1546-1570 (2020). MSC: 65M55 26A33 65T50 65F05 15B05 35R11 PDF BibTeX XML Cite \textit{M. Chen} et al., SIAM J. Matrix Anal. Appl. 41, No. 4, 1546--1570 (2020; Zbl 1461.65236) Full Text: DOI arXiv OpenURL
Bhatnagar, Diksha; Pandey, Rupakshi Mishra A study of some integral transforms on Q function. (English) Zbl 1463.33041 South East Asian J. Math. Math. Sci. 16, No. 1, 99-110 (2020). MSC: 33E12 26A33 44A10 PDF BibTeX XML Cite \textit{D. Bhatnagar} and \textit{R. M. Pandey}, South East Asian J. Math. Math. Sci. 16, No. 1, 99--110 (2020; Zbl 1463.33041) Full Text: Link OpenURL
Patra, Asim Similarity analytical solutions for the Schrödinger equation with the Riesz fractional derivative in quantum mechanics. (English) Zbl 1455.35292 Math. Methods Appl. Sci. 43, No. 17, 10287-10295 (2020). MSC: 35R11 35Q41 35A22 PDF BibTeX XML Cite \textit{A. Patra}, Math. Methods Appl. Sci. 43, No. 17, 10287--10295 (2020; Zbl 1455.35292) Full Text: DOI arXiv OpenURL
Zhang, Lu; Zhou, Yong; Samet, Bessem Terminal value problems of fractional evolution equations. (English) Zbl 1459.34049 J. Integral Equations Appl. 32, No. 3, 377-393 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34G20 47N20 45E05 42B10 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Integral Equations Appl. 32, No. 3, 377--393 (2020; Zbl 1459.34049) Full Text: DOI Euclid OpenURL
Roopkumar, R. Quaternionic fractional Fourier transform for Boehmians. (English) Zbl 1467.46043 Ukr. Math. J. 72, No. 6, 942-952 (2020) and Ukr. Mat. Zh. 72, No. 6, 812-821 (2020). MSC: 46F12 42A38 46S05 PDF BibTeX XML Cite \textit{R. Roopkumar}, Ukr. Math. J. 72, No. 6, 942--952 (2020; Zbl 1467.46043) Full Text: DOI OpenURL
Srivastava, H. M.; Shah, Firdous A.; Tantary, Azhar Y. A family of convolution-based generalized Stockwell transforms. (English) Zbl 1453.42007 J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1505-1536 (2020). MSC: 42A85 65R10 42A38 42C40 42C20 47G10 44A15 94A12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1505--1536 (2020; Zbl 1453.42007) Full Text: DOI OpenURL
Odibat, Zaid Fractional power series solutions of fractional differential equations by using generalized Taylor series. (English) Zbl 1455.34009 Appl. Comput. Math. 19, No. 1, 47-58 (2020). MSC: 34A08 34A25 34C20 41A58 34A12 PDF BibTeX XML Cite \textit{Z. Odibat}, Appl. Comput. Math. 19, No. 1, 47--58 (2020; Zbl 1455.34009) Full Text: Link OpenURL
Xiong, Xiangtuan; Bai, Enpeng An optimal filtering method for the sideways fractional heat equation. (Chinese. English summary) Zbl 1463.65351 J. Northwest Norm. Univ., Nat. Sci. 56, No. 3, 14-16, 47 (2020). MSC: 65N20 65N15 65T50 35R11 35K05 35B65 PDF BibTeX XML Cite \textit{X. Xiong} and \textit{E. Bai}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 3, 14--16, 47 (2020; Zbl 1463.65351) Full Text: DOI OpenURL
Shi, Haipan; Yang, Heju; Li, Zunfeng; Qiao, Yuying Fractional Clifford-Fourier transform and its application. (English) Zbl 1451.30098 Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 68, 16 p. (2020). MSC: 30G35 30E20 30E25 45E05 PDF BibTeX XML Cite \textit{H. Shi} et al., Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 68, 16 p. (2020; Zbl 1451.30098) Full Text: DOI OpenURL
Marin, D.; Guilherme, L. M. S.; Lenzi, M. K.; da Silva, L. R.; Lenzi, E. K.; Sandev, T. Diffusion-reaction processes on a backbone structure. (English) Zbl 1454.35405 Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105218, 8 p. (2020). MSC: 35Q99 35K57 44A10 42A10 42A38 33E12 65R10 65M80 35R11 PDF BibTeX XML Cite \textit{D. Marin} et al., Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105218, 8 p. (2020; Zbl 1454.35405) Full Text: DOI OpenURL
Arenas, M. L.; San Antolín, Angel On symmetric compactly supported wavelets with vanishing moments associated to \(E_d^{(2)}(\mathbb{Z})\) dilations. (English) Zbl 1454.42033 J. Fourier Anal. Appl. 26, No. 5, Paper No. 72, 28 p. (2020). Reviewer: Devendra Singh Chouhan (Indore) MSC: 42C40 26A33 PDF BibTeX XML Cite \textit{M. L. Arenas} and \textit{A. San Antolín}, J. Fourier Anal. Appl. 26, No. 5, Paper No. 72, 28 p. (2020; Zbl 1454.42033) Full Text: DOI OpenURL
Kumar, Virendra On a generalized fractional Fourier transform. (English) Zbl 1450.42004 Palest. J. Math. 9, No. 2, 903-907 (2020). Reviewer: Alex Amenta (Bonn) MSC: 42A38 42B10 33C10 33C20 33E12 33E20 PDF BibTeX XML Cite \textit{V. Kumar}, Palest. J. Math. 9, No. 2, 903--907 (2020; Zbl 1450.42004) Full Text: Link OpenURL
Faress, Moussa; Fahlaoui, Said Spherical Fourier transform on the quaternionic Heisenberg group. (English) Zbl 1443.43010 Integral Transforms Spec. Funct. 31, No. 9, 685-701 (2020). MSC: 43A90 26A33 PDF BibTeX XML Cite \textit{M. Faress} and \textit{S. Fahlaoui}, Integral Transforms Spec. Funct. 31, No. 9, 685--701 (2020; Zbl 1443.43010) Full Text: DOI OpenURL
Dziri, M.; Kroumi, A. On the boundedness of fractional maximal and Riesz potential operators associated with Kontorovich-Lebedev transform. (English) Zbl 1447.42004 Integral Transforms Spec. Funct. 31, No. 8, 601-619 (2020). MSC: 42A38 33C10 42B25 44A35 PDF BibTeX XML Cite \textit{M. Dziri} and \textit{A. Kroumi}, Integral Transforms Spec. Funct. 31, No. 8, 601--619 (2020; Zbl 1447.42004) Full Text: DOI OpenURL
Singh, P.; Singh, V. Oblique projectors from the Simpson discrete Fourier transformation matrix. (English) Zbl 1463.43003 Aust. J. Math. Anal. Appl. 17, No. 1, Article No. 7, 11 p. (2020). MSC: 43A32 PDF BibTeX XML Cite \textit{P. Singh} and \textit{V. Singh}, Aust. J. Math. Anal. Appl. 17, No. 1, Article No. 7, 11 p. (2020; Zbl 1463.43003) Full Text: Link OpenURL
Veeresha, Pundikala; Prakasha, Doddabhadrappla Gowda; Baleanu, Dumitru Analysis of fractional Swift-Hohenberg equation using a novel computational technique. (English) Zbl 1446.35256 Math. Methods Appl. Sci. 43, No. 4, 1970-1987 (2020). MSC: 35R11 26A33 41A58 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Math. Methods Appl. Sci. 43, No. 4, 1970--1987 (2020; Zbl 1446.35256) Full Text: DOI OpenURL
Babushkin, M. V. Approximation of even functions with nonnegative Fourier coefficients by fractional Riesz sums. (English. Russian original) Zbl 1442.42011 J. Math. Sci., New York 244, No. 4, 576-600 (2020); translation from Probl. Mat. Anal. 101, 35-55 (2019). MSC: 42A16 42A10 26A15 PDF BibTeX XML Cite \textit{M. V. Babushkin}, J. Math. Sci., New York 244, No. 4, 576--600 (2020; Zbl 1442.42011); translation from Probl. Mat. Anal. 101, 35--55 (2019) Full Text: DOI OpenURL
Benahmadi, Abdelhadi; Ghanmi, Allal; El Ainin, Mohammed Souid A special orthogonal complement basis for holomorphic-Hermite functions and associated \(1d\)- and \(2d\)-fractional Fourier transforms. (English) Zbl 1442.42061 Integral Transforms Spec. Funct. 31, No. 6, 471-486 (2020). MSC: 42C05 33C45 46E22 46E20 65R10 42A38 42B10 PDF BibTeX XML Cite \textit{A. Benahmadi} et al., Integral Transforms Spec. Funct. 31, No. 6, 471--486 (2020; Zbl 1442.42061) Full Text: DOI OpenURL
Li, Meng; Huang, Chengming; Zhao, Yongliang Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation. (English) Zbl 1442.65168 Numer. Algorithms 84, No. 3, 1081-1119 (2020). MSC: 65M06 65N30 65M12 65F10 65F08 65T50 15B05 26A33 35R11 35Q55 PDF BibTeX XML Cite \textit{M. Li} et al., Numer. Algorithms 84, No. 3, 1081--1119 (2020; Zbl 1442.65168) Full Text: DOI OpenURL
Saifia, O.; Boucenna, D.; Chidouh, A. Study of Mainardi’s fractional heat problem. (English) Zbl 1442.35522 J. Comput. Appl. Math. 378, Article ID 112943, 8 p. (2020). MSC: 35R11 80A19 44A10 PDF BibTeX XML Cite \textit{O. Saifia} et al., J. Comput. Appl. Math. 378, Article ID 112943, 8 p. (2020; Zbl 1442.35522) Full Text: DOI OpenURL
Sahbani, Samir Fractional Fourier-Jacobi type transform. (English) Zbl 1437.42007 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 1, 135-156 (2020). MSC: 42A38 42B10 35K05 42B37 PDF BibTeX XML Cite \textit{S. Sahbani}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 1, 135--156 (2020; Zbl 1437.42007) Full Text: DOI OpenURL
Ngoc, Tran Bao; Tuan, Nguyen Huy; Kirane, Mokhtar Regularization of a sideways problem for a time-fractional diffusion equation with nonlinear source. (English) Zbl 1436.35244 J. Inverse Ill-Posed Probl. 28, No. 2, 211-235 (2020). MSC: 35K58 35R11 35R30 42B37 47H10 47J06 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., J. Inverse Ill-Posed Probl. 28, No. 2, 211--235 (2020; Zbl 1436.35244) Full Text: DOI arXiv OpenURL
Li, Shanshan; Leng, Jinsong; Fei, Minggang Spectrums of functions associated to the fractional Clifford-Fourier transform. (English) Zbl 1433.42006 Adv. Appl. Clifford Algebr. 30, No. 1, Paper No. 6, 15 p. (2020). MSC: 42B10 30G35 PDF BibTeX XML Cite \textit{S. Li} et al., Adv. Appl. Clifford Algebr. 30, No. 1, Paper No. 6, 15 p. (2020; Zbl 1433.42006) Full Text: DOI OpenURL
Singh, Abhishek; Banerji, P. K. Cauchy representation of fractional Fourier transform for Boehmians. (English) Zbl 1431.45002 Bol. Soc. Parana. Mat. (3) 38, No. 1, 55-65 (2020). MSC: 45E05 44A15 46F12 PDF BibTeX XML Cite \textit{A. Singh} and \textit{P. K. Banerji}, Bol. Soc. Parana. Mat. (3) 38, No. 1, 55--65 (2020; Zbl 1431.45002) Full Text: Link OpenURL
Kamalakkannan, R.; Roopkumar, R. Multidimensional fractional Fourier transform and generalized fractional convolution. (English) Zbl 1431.42010 Integral Transforms Spec. Funct. 31, No. 2, 152-165 (2020). MSC: 42A38 42B10 44A15 44A35 PDF BibTeX XML Cite \textit{R. Kamalakkannan} and \textit{R. Roopkumar}, Integral Transforms Spec. Funct. 31, No. 2, 152--165 (2020; Zbl 1431.42010) Full Text: DOI OpenURL
Zhao, Yong-Liang; Huang, Ting-Zhu; Gu, Xian-Ming; Luo, Wei-Hua A fast second-order implicit difference method for time-space fractional advection-diffusion equation. (English) Zbl 07150134 Numer. Funct. Anal. Optim. 41, No. 3, 257-293 (2020). MSC: 65-XX 76-XX 70-XX PDF BibTeX XML Cite \textit{Y.-L. Zhao} et al., Numer. Funct. Anal. Optim. 41, No. 3, 257--293 (2020; Zbl 07150134) Full Text: DOI arXiv OpenURL
Povstenko, Yuriy; Kyrylych, Tamara Time-fractional heat conduction with heat absorption in a half-line domain due to boundary value of the heat flux varying harmonically in time. (English) Zbl 1427.80007 Malinowska, Agnieszka B. (ed.) et al., Advances in non-integer order calculus and its applications. Proceedings of the 10th international conference on non-integer order calculus and its applications, Bialystok University of Technology, Białystok, Poland, September 20–21, 2018. Cham: Springer. Lect. Notes Electr. Eng. 559, 268-281 (2020). MSC: 80A20 35R11 26A33 44A10 42A38 33E12 PDF BibTeX XML Cite \textit{Y. Povstenko} and \textit{T. Kyrylych}, Lect. Notes Electr. Eng. 559, 268--281 (2020; Zbl 1427.80007) Full Text: DOI OpenURL
Chang, Seung Jun; Choi, Jae Gil Generalized transforms and generalized convolution products associated with Gaussian paths on function space. (English) Zbl 1456.60083 Commun. Pure Appl. Anal. 19, No. 1, 371-389 (2020). MSC: 60G15 60G22 28C20 42B10 PDF BibTeX XML Cite \textit{S. J. Chang} and \textit{J. G. Choi}, Commun. Pure Appl. Anal. 19, No. 1, 371--389 (2020; Zbl 1456.60083) Full Text: DOI OpenURL
Agarwal, Ritu; Yadav, M. P.; Agarwal, Ravi P.; Goyal, Rohit Analytic solution of fractional advection dispersion equation with decay for contaminant transport in porous media. (English) Zbl 07348687 Mat. Vesn. 71, No. 1-2, 5-15 (2019). MSC: 35R11 26A33 76S05 PDF BibTeX XML Cite \textit{R. Agarwal} et al., Mat. Vesn. 71, No. 1--2, 5--15 (2019; Zbl 07348687) Full Text: EMIS Link Link OpenURL
Zhang, Min; Zhang, Guo-Feng; Liao, Li-Dan Fast iterative solvers and simulation for the space fractional Ginzburg-Landau equations. (English) Zbl 1442.65187 Comput. Math. Appl. 78, No. 5, 1793-1800 (2019). MSC: 65M06 65M12 35Q56 35R11 PDF BibTeX XML Cite \textit{M. Zhang} et al., Comput. Math. Appl. 78, No. 5, 1793--1800 (2019; Zbl 1442.65187) Full Text: DOI OpenURL
Singh, Yudhveer; Gill, Vinod; Kundu, Sunil; Kumar, Devendra On the Elzaki transform and its applications in fractional free electron laser equation. (English) Zbl 1450.44004 Acta Univ. Sapientiae, Math. 11, No. 2, 419-429 (2019). MSC: 44A15 26A33 42B10 33E12 34A08 44A35 PDF BibTeX XML Cite \textit{Y. Singh} et al., Acta Univ. Sapientiae, Math. 11, No. 2, 419--429 (2019; Zbl 1450.44004) Full Text: DOI OpenURL
Aghili, Arman Solution to time fractional non homogeneous first order PDE with non constant coefficients. (English) Zbl 1436.35309 Tbil. Math. J. 12, No. 4, 205-211 (2019). MSC: 35R11 44A10 44A15 44A35 PDF BibTeX XML Cite \textit{A. Aghili}, Tbil. Math. J. 12, No. 4, 205--211 (2019; Zbl 1436.35309) Full Text: DOI Euclid OpenURL
Ortigueira, Manuel D.; Lopes, António M.; Tenreiro Machado, José On the numerical computation of the Mittag-Leffler function. (English) Zbl 07168325 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 725-736 (2019). MSC: 26A33 65R10 PDF BibTeX XML Cite \textit{M. D. Ortigueira} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 725--736 (2019; Zbl 07168325) Full Text: DOI OpenURL
Wang, Kexin; Yan, Xingjie; Yin, Kun Novel methods for time-space fractional diffusion equation. (English) Zbl 1449.35452 J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 252-260 (2019). MSC: 35R11 35C10 PDF BibTeX XML Cite \textit{K. Wang} et al., J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 252--260 (2019; Zbl 1449.35452) Full Text: DOI OpenURL