Mahmoudi, Fatemeh; Tahmasebi, Mahdieh The convergence of exponential Euler method for weighted fractional stochastic equations. (English) Zbl 07527962 Comput. Methods Differ. Equ. 10, No. 2, 538-548 (2022). MSC: 65C30 60H07 PDF BibTeX XML Cite \textit{F. Mahmoudi} and \textit{M. Tahmasebi}, Comput. Methods Differ. Equ. 10, No. 2, 538--548 (2022; Zbl 07527962) Full Text: DOI OpenURL
Aryani, Elnaz; Babaei, Afshin; Valinejad, Ali A numerical technique for solving nonlinear fractional stochastic integro-differential equations with \(n\)-dimensional Wiener process. (English) Zbl 07527928 Comput. Methods Differ. Equ. 10, No. 1, 61-76 (2022). MSC: 45J05 60H20 26A33 65C30 PDF BibTeX XML Cite \textit{E. Aryani} et al., Comput. Methods Differ. Equ. 10, No. 1, 61--76 (2022; Zbl 07527928) Full Text: DOI OpenURL
Jacquier, Antoine; Pannier, Alexandre Large and moderate deviations for stochastic Volterra systems. (English) Zbl 07527294 Stochastic Processes Appl. 149, 142-187 (2022). MSC: 60F10 60G22 91G20 PDF BibTeX XML Cite \textit{A. Jacquier} and \textit{A. Pannier}, Stochastic Processes Appl. 149, 142--187 (2022; Zbl 07527294) Full Text: DOI OpenURL
Kukush, Alexander; Lohvinenko, Stanislav; Mishura, Yuliya; Ralchenko, Kostiantyn Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend. (English) Zbl 07527235 Stat. Inference Stoch. Process. 25, No. 1, 159-187 (2022). MSC: 60G22 62F10 62F12 PDF BibTeX XML Cite \textit{A. Kukush} et al., Stat. Inference Stoch. Process. 25, No. 1, 159--187 (2022; Zbl 07527235) Full Text: DOI OpenURL
Kříž, Pavel; Šnupárková, Jana Pathwise least-squares estimator for linear SPDEs with additive fractional noise. (English) Zbl 07524958 Electron. J. Stat. 16, No. 1, 1561-1594 (2022). MSC: 62M09 60H15 60G22 PDF BibTeX XML Cite \textit{P. Kříž} and \textit{J. Šnupárková}, Electron. J. Stat. 16, No. 1, 1561--1594 (2022; Zbl 07524958) Full Text: DOI Link OpenURL
Araya, Héctor; Slaoui, Meryem; Torres, Soledad Bayesian inference for fractional oscillating Brownian motion. (English) Zbl 07524027 Comput. Stat. 37, No. 2, 887-907 (2022). MSC: 65C60 PDF BibTeX XML Cite \textit{H. Araya} et al., Comput. Stat. 37, No. 2, 887--907 (2022; Zbl 07524027) Full Text: DOI OpenURL
Aurzada, F.; Kilian, M. Asymptotics of the persistence exponent of integrated fractional Brownian motion and fractionally integrated Brownian motion. (English) Zbl 07523560 Theory Probab. Appl. 67, No. 1, 77-88 (2022) and Teor. Veroyatn. Primen. 67, No. 1, 100-114 (2022). MSC: 60-XX 70-XX PDF BibTeX XML Cite \textit{F. Aurzada} and \textit{M. Kilian}, Theory Probab. Appl. 67, No. 1, 77--88 (2022; Zbl 07523560) Full Text: DOI OpenURL
Ogawa, Shigeyoshi Mean value theorems for the noncausal stochastic integral. (English) Zbl 07523448 Japan J. Ind. Appl. Math. 39, No. 2, 801-814 (2022). MSC: 60H05 60H99 60J65 26A24 26A33 PDF BibTeX XML Cite \textit{S. Ogawa}, Japan J. Ind. Appl. Math. 39, No. 2, 801--814 (2022; Zbl 07523448) Full Text: DOI OpenURL
Thach, Tran Ngoc; Tuan, Nguyen Huy Stochastic pseudo-parabolic equations with fractional derivative and fractional Brownian motion. (English) Zbl 07523358 Stochastic Anal. Appl. 40, No. 2, 328-351 (2022). MSC: 60G15 60G22 60G52 60G57 PDF BibTeX XML Cite \textit{T. N. Thach} and \textit{N. H. Tuan}, Stochastic Anal. Appl. 40, No. 2, 328--351 (2022; Zbl 07523358) Full Text: DOI OpenURL
Kataria, Kuldeep Kumar; Khandakar, Mostafizar Time-changed space-time fractional Poisson process. (English) Zbl 07523355 Stochastic Anal. Appl. 40, No. 2, 246-267 (2022). MSC: 60G22 60G55 PDF BibTeX XML Cite \textit{K. K. Kataria} and \textit{M. Khandakar}, Stochastic Anal. Appl. 40, No. 2, 246--267 (2022; Zbl 07523355) Full Text: DOI OpenURL
Prakasa Rao, B. L. S. Parametric inference for stochastic differential equations driven by a mixed fractional Brownian motion with random effects based on discrete observations. (English) Zbl 07523354 Stochastic Anal. Appl. 40, No. 2, 236-245 (2022). MSC: 62M09 60G15 PDF BibTeX XML Cite \textit{B. L. S. Prakasa Rao}, Stochastic Anal. Appl. 40, No. 2, 236--245 (2022; Zbl 07523354) Full Text: DOI OpenURL
Ma, Jingtang; Wu, Haofei A fast algorithm for simulation of rough volatility models. (English) Zbl 07518198 Quant. Finance 22, No. 3, 447-462 (2022). MSC: 91G20 60G22 PDF BibTeX XML Cite \textit{J. Ma} and \textit{H. Wu}, Quant. Finance 22, No. 3, 447--462 (2022; Zbl 07518198) Full Text: DOI OpenURL
Ascione, Giacomo; Leonenko, Nikolai; Pirozzi, Enrica Non-local solvable birth-death processes. (English) Zbl 07517676 J. Theor. Probab. 35, No. 2, 1284-1323 (2022). MSC: 60K15 33C45 60G22 PDF BibTeX XML Cite \textit{G. Ascione} et al., J. Theor. Probab. 35, No. 2, 1284--1323 (2022; Zbl 07517676) Full Text: DOI OpenURL
Mishura, Yuliya; Yoshidae, Nakahiro Divergence of an integral of a process with small ball estimate. (English) Zbl 07515383 Stochastic Processes Appl. 148, 1-24 (2022). MSC: 60F15 60G17 60G15 60G22 PDF BibTeX XML Cite \textit{Y. Mishura} and \textit{N. Yoshidae}, Stochastic Processes Appl. 148, 1--24 (2022; Zbl 07515383) Full Text: DOI OpenURL
Geng, Xi; Ouyang, Cheng; Tindel, Samy Precise local estimates for differential equations driven by fractional Brownian motion: hypoelliptic case. (English) Zbl 07512873 Ann. Probab. 50, No. 2, 649-687 (2022). MSC: 60H10 60G15 60H07 PDF BibTeX XML Cite \textit{X. Geng} et al., Ann. Probab. 50, No. 2, 649--687 (2022; Zbl 07512873) Full Text: DOI Link OpenURL
Beghin, Luisa; Macci, Claudio Non-central moderate deviations for compound fractional Poisson processes. (English) Zbl 07512055 Stat. Probab. Lett. 185, Article ID 109424, 8 p. (2022). MSC: 60F10 60F05 60G22 33E12 60G55 PDF BibTeX XML Cite \textit{L. Beghin} and \textit{C. Macci}, Stat. Probab. Lett. 185, Article ID 109424, 8 p. (2022; Zbl 07512055) Full Text: DOI OpenURL
Kim, Yoon Tae; Park, Hyun Suk Fourth moment bound and stationary Gaussian processes with positive correlation. (English) Zbl 07507759 J. Korean Stat. Soc. 51, No. 1, 172-197 (2022). MSC: 60F05 60G15 60H07 PDF BibTeX XML Cite \textit{Y. T. Kim} and \textit{H. S. Park}, J. Korean Stat. Soc. 51, No. 1, 172--197 (2022; Zbl 07507759) Full Text: DOI OpenURL
Aidara, Sadibou; Sane, Ibrahima Deplay BSDEs driven by fractional Brownian motion. (English) Zbl 07502694 Random Oper. Stoch. Equ. 30, No. 1, 21-31 (2022). MSC: 60H05 60H07 60G22 60G44 PDF BibTeX XML Cite \textit{S. Aidara} and \textit{I. Sane}, Random Oper. Stoch. Equ. 30, No. 1, 21--31 (2022; Zbl 07502694) Full Text: DOI OpenURL
Ji, Lanpeng; Peng, Xiaofan Extrema of multi-dimensional Gaussian processes over random intervals. (English) Zbl 07501651 J. Appl. Probab. 59, No. 1, 81-104 (2022). MSC: 60G15 60G70 PDF BibTeX XML Cite \textit{L. Ji} and \textit{X. Peng}, J. Appl. Probab. 59, No. 1, 81--104 (2022; Zbl 07501651) Full Text: DOI OpenURL
Shen, Guangjun; Xiang, Jie; Wu, Jiang-Lun Averaging principle for distribution dependent stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. (English) Zbl 07500535 J. Differ. Equations 321, 381-414 (2022). MSC: 60G22 60H10 34C29 35Q83 PDF BibTeX XML Cite \textit{G. Shen} et al., J. Differ. Equations 321, 381--414 (2022; Zbl 07500535) Full Text: DOI OpenURL
Shen, Jinqi; Stoev, Stilian; Hsing, Tailen Tangent fields, intrinsic stationarity, and self similarity. (English) Zbl 07500297 Electron. J. Probab. 27, Paper No. 34, 56 p. (2022). MSC: 60G10 60G12 60G18 60G22 62R10 62H11 PDF BibTeX XML Cite \textit{J. Shen} et al., Electron. J. Probab. 27, Paper No. 34, 56 p. (2022; Zbl 07500297) Full Text: DOI OpenURL
Thach, Tran Ngoc; Kumar, Devendra; Nguyen, Hoang Luc; Nguyen Huy Tuan Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. (English) Zbl 07495845 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 481-499 (2022). MSC: 60G15 60G22 60G52 60G57 PDF BibTeX XML Cite \textit{T. N. Thach} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 481--499 (2022; Zbl 07495845) Full Text: DOI OpenURL
Ngoc, Tran Bao; Thach, Tran Ngoc; O’Regan, Donal; Nguyen Huy Tuan On inverse initial value problems for the stochastic strongly damped wave equation. (English) Zbl 07495655 Appl. Anal. 101, No. 2, 527-544 (2022). MSC: 60G15 60H40 60H05 60G22 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., Appl. Anal. 101, No. 2, 527--544 (2022; Zbl 07495655) Full Text: DOI OpenURL
Tien Dung, Nguyen; Thu Hang, Nguyen; Phuong Thuy, Pham Thi Density estimates for the exponential functionals of fractional Brownian motion. (English) Zbl 07492999 C. R., Math., Acad. Sci. Paris 360, 151-159 (2022). MSC: 60G22 60H07 PDF BibTeX XML Cite \textit{N. Tien Dung} et al., C. R., Math., Acad. Sci. Paris 360, 151--159 (2022; Zbl 07492999) Full Text: DOI arXiv OpenURL
Cao, Qiyong; Gao, Hongjun High order Anderson parabolic model driven by rough noise in space. (English) Zbl 07492877 Stoch. Dyn. 22, No. 1, Article ID 2150052, 24 p. (2022). MSC: 60E10 82B35 60J76 60G22 PDF BibTeX XML Cite \textit{Q. Cao} and \textit{H. Gao}, Stoch. Dyn. 22, No. 1, Article ID 2150052, 24 p. (2022; Zbl 07492877) Full Text: DOI OpenURL
Ichiba, Tomoyuki; Pang, Guodong; Taqqu, Murad S. Path properties of a generalized fractional Brownian motion. (English) Zbl 07491646 J. Theor. Probab. 35, No. 1, 550-574 (2022). MSC: 60G05 60G15 60G17 60G18 60G22 PDF BibTeX XML Cite \textit{T. Ichiba} et al., J. Theor. Probab. 35, No. 1, 550--574 (2022; Zbl 07491646) Full Text: DOI arXiv OpenURL
Azmoodeh, Ehsan; Mishura, Yuliya; Sabzikar, Farzad How does tempering affect the local and global properties of fractional Brownian motion? (English) Zbl 07491644 J. Theor. Probab. 35, No. 1, 484-527 (2022). MSC: 60G22 60G15 60F17 60H07 PDF BibTeX XML Cite \textit{E. Azmoodeh} et al., J. Theor. Probab. 35, No. 1, 484--527 (2022; Zbl 07491644) Full Text: DOI arXiv OpenURL
Gehringer, Johann; Li, Xue-Mei Functional limit theorems for the fractional Ornstein-Uhlenbeck process. (English) Zbl 07491642 J. Theor. Probab. 35, No. 1, 426-456 (2022). MSC: 60F05 60F17 60G18 60G22 60H05 60H07 60H10 PDF BibTeX XML Cite \textit{J. Gehringer} and \textit{X.-M. Li}, J. Theor. Probab. 35, No. 1, 426--456 (2022; Zbl 07491642) Full Text: DOI arXiv OpenURL
Chebunin, Mikhail; Zuyev, Sergei Functional central limit theorems for occupancies and missing mass process in infinite urn models. (English) Zbl 07491628 J. Theor. Probab. 35, No. 1, 1-19 (2022). MSC: 60F17 60G22 60G15 60G18 PDF BibTeX XML Cite \textit{M. Chebunin} and \textit{S. Zuyev}, J. Theor. Probab. 35, No. 1, 1--19 (2022; Zbl 07491628) Full Text: DOI arXiv OpenURL
Garrido-Atienza, M. J.; Schmalfuss, B.; Valero, J. Setvalued dynamical systems for stochastic evolution equations driven by fractional noise. (English) Zbl 07491602 J. Dyn. Differ. Equations 34, No. 1, 79-105 (2022). MSC: 37H05 60G22 26A33 PDF BibTeX XML Cite \textit{M. J. Garrido-Atienza} et al., J. Dyn. Differ. Equations 34, No. 1, 79--105 (2022; Zbl 07491602) Full Text: DOI arXiv OpenURL
Cao, Wanrong; Hao, Zhaopeng; Zhang, Zhongqiang Optimal strong convergence of finite element methods for one-dimensional stochastic elliptic equations with fractional noise. (English) Zbl 07488711 J. Sci. Comput. 91, No. 1, Paper No. 1, 23 p. (2022). MSC: 65-XX 35B65 41A25 60H35 60H10 65L60 65L70 PDF BibTeX XML Cite \textit{W. Cao} et al., J. Sci. Comput. 91, No. 1, Paper No. 1, 23 p. (2022; Zbl 07488711) Full Text: DOI OpenURL
Akeb, Tassadit; Challali, Nordine; Mellah, Omar Almost periodic solutions in distribution to affine stochastic differential equations driven by a fractional Brownian motion. (English) Zbl 07488625 Mediterr. J. Math. 19, No. 2, Paper No. 69, 32 p. (2022). Reviewer: Toader Morozan (Bucureşti) MSC: 60G05 60H10 34C27 PDF BibTeX XML Cite \textit{T. Akeb} et al., Mediterr. J. Math. 19, No. 2, Paper No. 69, 32 p. (2022; Zbl 07488625) Full Text: DOI OpenURL
Ouyang, Cheng; Roberson-Vickery, William Quasi-sure non-self-intersection for rough differential equations driven by fractional Brownian motion. (English) Zbl 07488310 Electron. Commun. Probab. 27, Paper No. 15, 12 p. (2022). MSC: 60L20 60H10 60H07 PDF BibTeX XML Cite \textit{C. Ouyang} and \textit{W. Roberson-Vickery}, Electron. Commun. Probab. 27, Paper No. 15, 12 p. (2022; Zbl 07488310) Full Text: DOI OpenURL
Zeinali, Narges; Pourdarvish, Ahmad An entropy-based estimator of the Hurst exponent in fractional Brownian motion. (English) Zbl 07485932 Physica A 591, Article ID 126690, 10 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{N. Zeinali} and \textit{A. Pourdarvish}, Physica A 591, Article ID 126690, 10 p. (2022; Zbl 07485932) Full Text: DOI OpenURL
Falkowski, Adrian; Słomiński, Leszek SDEs with two reflecting barriers driven by semimartingales and processes with bounded \(p\)-variation. (English) Zbl 07485072 Stochastic Processes Appl. 146, 164-186 (2022). MSC: 60H20 60G22 PDF BibTeX XML Cite \textit{A. Falkowski} and \textit{L. Słomiński}, Stochastic Processes Appl. 146, 164--186 (2022; Zbl 07485072) Full Text: DOI OpenURL
Ayache, Antoine; Bouly, Florent Moving average multifractional processes with random exponent: lower bounds for local oscillations. (English) Zbl 07485071 Stochastic Processes Appl. 146, 143-163 (2022). MSC: 60G17 60G22 60G18 PDF BibTeX XML Cite \textit{A. Ayache} and \textit{F. Bouly}, Stochastic Processes Appl. 146, 143--163 (2022; Zbl 07485071) Full Text: DOI OpenURL
Kumar, Vivek Stochastic fractional heat equation perturbed by general Gaussian and non-Gaussian noise. (English) Zbl 07484431 Stat. Probab. Lett. 184, Article ID 109381, 9 p. (2022). MSC: 60H15 35Q30 60G18 60G22 26A33 PDF BibTeX XML Cite \textit{V. Kumar}, Stat. Probab. Lett. 184, Article ID 109381, 9 p. (2022; Zbl 07484431) Full Text: DOI OpenURL
Kataria, K. K.; Khandakar, M. Extended eigenvalue-eigenvector method. (English) Zbl 07484419 Stat. Probab. Lett. 183, Article ID 109361, 9 p. (2022). MSC: 60G22 60G55 PDF BibTeX XML Cite \textit{K. K. Kataria} and \textit{M. Khandakar}, Stat. Probab. Lett. 183, Article ID 109361, 9 p. (2022; Zbl 07484419) Full Text: DOI OpenURL
Dlask, Martin; Kukal, Jaromir Hurst exponent estimation of fractional surfaces for mammogram images analysis. (English) Zbl 07482559 Physica A 585, Article ID 126424, 11 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{M. Dlask} and \textit{J. Kukal}, Physica A 585, Article ID 126424, 11 p. (2022; Zbl 07482559) Full Text: DOI OpenURL
Duc, Luu Hoang Random attractors for dissipative systems with rough noises. (English) Zbl 07481824 Discrete Contin. Dyn. Syst. 42, No. 4, 1873-1902 (2022). MSC: 37Hxx 60Gxx 60Hxx 37H30 60G22 60G40 60H10 PDF BibTeX XML Cite \textit{L. H. Duc}, Discrete Contin. Dyn. Syst. 42, No. 4, 1873--1902 (2022; Zbl 07481824) Full Text: DOI OpenURL
Hu, Yaozhong; Wang, Xiong Stochastic heat equation with general rough noise. (English) Zbl 1483.60094 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 1, 379-423 (2022). MSC: 60H15 35K08 60G15 60G22 60H05 60H07 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{X. Wang}, Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 1, 379--423 (2022; Zbl 1483.60094) Full Text: DOI OpenURL
Feng, Xiaoli; Zhao, Meixia; Li, Peijun; Wang, Xu An inverse source problem for the stochastic wave equation. (English) Zbl 07481241 Inverse Probl. Imaging 16, No. 2, 397-415 (2022). MSC: 35R30 35R60 65M32 PDF BibTeX XML Cite \textit{X. Feng} et al., Inverse Probl. Imaging 16, No. 2, 397--415 (2022; Zbl 07481241) Full Text: DOI arXiv OpenURL
Szarek, Dawid; Maraj-Zygmąt, Katarzyna; Sikora, Grzegorz; Krapf, Diego; Wyłomańska, Agnieszka Statistical test for anomalous diffusion based on empirical anomaly measure for Gaussian processes. (English) Zbl 07476373 Comput. Stat. Data Anal. 168, Article ID 107401, 16 p. (2022). MSC: 62-XX PDF BibTeX XML Cite \textit{D. Szarek} et al., Comput. Stat. Data Anal. 168, Article ID 107401, 16 p. (2022; Zbl 07476373) Full Text: DOI OpenURL
Wang, Mengjie; Dai, Xinjie; Xiao, Aiguo Optimal convergence rate of \(\theta\)-Maruyama method for stochastic Volterra integro-differential equations with Riemann-Liouville fractional Brownian motion. (English) Zbl 07475342 Adv. Appl. Math. Mech. 14, No. 1, 202-217 (2022). MSC: 65C30 65C20 65L20 PDF BibTeX XML Cite \textit{M. Wang} et al., Adv. Appl. Math. Mech. 14, No. 1, 202--217 (2022; Zbl 07475342) Full Text: DOI OpenURL
Čoupek, Petr; Maslowski, Bohdan; Ondreját, Martin Stochastic integration with respect to fractional processes in Banach spaces. (English) Zbl 07474682 J. Funct. Anal. 282, No. 8, Article ID 109393, 62 p. (2022). MSC: 60G22 60H05 60G15 60G18 60H07 PDF BibTeX XML Cite \textit{P. Čoupek} et al., J. Funct. Anal. 282, No. 8, Article ID 109393, 62 p. (2022; Zbl 07474682) Full Text: DOI arXiv OpenURL
Alòs, Elisa; García-Lorite, David; Gonzalez, Aitor Muguruza On smile properties of volatility derivatives: understanding the VIX skew. (English) Zbl 1483.91227 SIAM J. Financ. Math. 13, No. 1, 32-69 (2022). MSC: 91G20 91G80 60H07 60G22 PDF BibTeX XML Cite \textit{E. Alòs} et al., SIAM J. Financ. Math. 13, No. 1, 32--69 (2022; Zbl 1483.91227) Full Text: DOI arXiv OpenURL
Ito, Yu Integration with respect to Hölder rough paths of order greater than 1/4: an approach via fractional calculus. (English) Zbl 07473275 Collect. Math. 73, No. 1, 13-42 (2022). MSC: 26A33 26A42 60H05 PDF BibTeX XML Cite \textit{Y. Ito}, Collect. Math. 73, No. 1, 13--42 (2022; Zbl 07473275) Full Text: DOI OpenURL
Okada, Izumi; Yanagida, Eiji Probabilistic approach to the heat equation with a dynamic Hardy-type potential. (English) Zbl 1480.60193 Stochastic Processes Appl. 145, 204-225 (2022). MSC: 60H30 35K57 35K67 60J65 35K15 60J55 PDF BibTeX XML Cite \textit{I. Okada} and \textit{E. Yanagida}, Stochastic Processes Appl. 145, 204--225 (2022; Zbl 1480.60193) Full Text: DOI OpenURL
Panzo, Hugo Spectral upper bound for the torsion function of symmetric stable processes. (English) Zbl 1482.35145 Proc. Am. Math. Soc. 150, No. 3, 1241-1255 (2022). MSC: 35P15 35J25 35R11 60G52 60J45 60J65 PDF BibTeX XML Cite \textit{H. Panzo}, Proc. Am. Math. Soc. 150, No. 3, 1241--1255 (2022; Zbl 1482.35145) Full Text: DOI arXiv OpenURL
Molchan, G. The persistence exponents of Gaussian random fields connected by the Lamperti transform. (English) Zbl 07468347 J. Stat. Phys. 186, No. 2, Paper No. 21, 13 p. (2022). MSC: 60Gxx 60Jxx 60Fxx PDF BibTeX XML Cite \textit{G. Molchan}, J. Stat. Phys. 186, No. 2, Paper No. 21, 13 p. (2022; Zbl 07468347) Full Text: DOI arXiv OpenURL
Das, Kaustav; Markowsky, Greg Existence, renormalization, and regularity properties of higher order derivatives of self-intersection local time of fractional Brownian motion. (English) Zbl 1480.60101 Stochastic Anal. Appl. 40, No. 1, 133-157 (2022). MSC: 60G22 PDF BibTeX XML Cite \textit{K. Das} and \textit{G. Markowsky}, Stochastic Anal. Appl. 40, No. 1, 133--157 (2022; Zbl 1480.60101) Full Text: DOI arXiv OpenURL
Cinque, Fabrizio On the sum of independent generalized Mittag-Leffler random variables and the related fractional processes. (English) Zbl 1480.60100 Stochastic Anal. Appl. 40, No. 1, 103-117 (2022). MSC: 60G22 60G50 60G55 PDF BibTeX XML Cite \textit{F. Cinque}, Stochastic Anal. Appl. 40, No. 1, 103--117 (2022; Zbl 1480.60100) Full Text: DOI OpenURL
Caraballo, Tomás; Boudaoui, Ahmed; Tayeb, Blouhi Transportation inequalities for coupled systems of stochastic delay evolution equations with a fractional Brownian motion. (English) Zbl 07466724 Stochastic Anal. Appl. 40, No. 1, 45-62 (2022). MSC: 60H15 60G22 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Stochastic Anal. Appl. 40, No. 1, 45--62 (2022; Zbl 07466724) Full Text: DOI OpenURL
Nourdin, Ivan; Pu, Fei Gaussian fluctuation for Gaussian Wishart matrices of overall correlation. (English) Zbl 1481.60012 Stat. Probab. Lett. 181, Article ID 109269, 11 p. (2022). MSC: 60B20 60F05 60G22 60H07 PDF BibTeX XML Cite \textit{I. Nourdin} and \textit{F. Pu}, Stat. Probab. Lett. 181, Article ID 109269, 11 p. (2022; Zbl 1481.60012) Full Text: DOI arXiv OpenURL
Forde, Martin; Fukasawa, Masaaki; Gerhold, Stefan; Smith, Benjamin The Riemann-Liouville field and its GMC as \(H \to 0\), and skew flattening for the rough Bergomi model. (English) Zbl 1478.60152 Stat. Probab. Lett. 181, Article ID 109265, 13 p. (2022). MSC: 60G57 60G15 28A80 60B10 PDF BibTeX XML Cite \textit{M. Forde} et al., Stat. Probab. Lett. 181, Article ID 109265, 13 p. (2022; Zbl 1478.60152) Full Text: DOI OpenURL
Shen, Leyi; Xia, Xiaoyu; Yan, Litan Least squares estimation for the linear self-repelling diffusion driven by \(\alpha \)-stable motions. (English) Zbl 1478.60220 Stat. Probab. Lett. 181, Article ID 109259, 11 p. (2022). MSC: 60J60 62M05 60K35 60F15 60G22 PDF BibTeX XML Cite \textit{L. Shen} et al., Stat. Probab. Lett. 181, Article ID 109259, 11 p. (2022; Zbl 1478.60220) Full Text: DOI OpenURL
Falconer, Kenneth J. Intermediate dimension of images of sequences under fractional Brownian motion. (English) Zbl 1478.60124 Stat. Probab. Lett. 182, Article ID 109300, 6 p. (2022). MSC: 60G22 60G15 PDF BibTeX XML Cite \textit{K. J. Falconer}, Stat. Probab. Lett. 182, Article ID 109300, 6 p. (2022; Zbl 1478.60124) Full Text: DOI arXiv OpenURL
Kreer, Markus An elementary proof for dynamical scaling for certain fractional non-homogeneous Poisson processes. (English) Zbl 1478.60126 Stat. Probab. Lett. 182, Article ID 109296, 6 p. (2022). MSC: 60G22 60G55 33C15 PDF BibTeX XML Cite \textit{M. Kreer}, Stat. Probab. Lett. 182, Article ID 109296, 6 p. (2022; Zbl 1478.60126) Full Text: DOI arXiv OpenURL
Wang, Ruifang; Xu, Yong; Yue, Hongge Stochastic averaging for the non-autonomous mixed stochastic differential equations with locally Lipschitz coefficients. (English) Zbl 1478.60181 Stat. Probab. Lett. 182, Article ID 109294, 11 p. (2022). MSC: 60H10 60H15 35R60 60H05 PDF BibTeX XML Cite \textit{R. Wang} et al., Stat. Probab. Lett. 182, Article ID 109294, 11 p. (2022; Zbl 1478.60181) Full Text: DOI arXiv OpenURL
Bréhier, Charles-Edouard Asymptotic preserving schemes for SDEs driven by fractional Brownian motion in the averaging regime. (English) Zbl 07461196 J. Math. Anal. Appl. 509, No. 1, Article ID 125940, 20 p. (2022). MSC: 60Hxx 60Gxx 60Fxx PDF BibTeX XML Cite \textit{C.-E. Bréhier}, J. Math. Anal. Appl. 509, No. 1, Article ID 125940, 20 p. (2022; Zbl 07461196) Full Text: DOI arXiv OpenURL
Apolinário, Gabriel B.; Chevillard, Laurent; Mourrat, Jean-Christophe Dynamical fractional and multifractal fields. (English) Zbl 07458041 J. Stat. Phys. 186, No. 1, Paper No. 15, 35 p. (2022). MSC: 35Qxx 35R60 60G22 PDF BibTeX XML Cite \textit{G. B. Apolinário} et al., J. Stat. Phys. 186, No. 1, Paper No. 15, 35 p. (2022; Zbl 07458041) Full Text: DOI arXiv OpenURL
Mes, A. K.; Moerman, R. W.; Shock, J. P.; Horowitz, W. A. Strongly coupled heavy and light quark thermal motion from AdS/CFT. (English) Zbl 1483.81148 Ann. Phys. 436, Article ID 168675, 88 p. (2022). MSC: 81V05 81V35 81T30 60G22 81T35 PDF BibTeX XML Cite \textit{A. K. Mes} et al., Ann. Phys. 436, Article ID 168675, 88 p. (2022; Zbl 1483.81148) Full Text: DOI arXiv OpenURL
Mirzaee, Farshid; Rezaei, Shadi; Samadyar, Nasrin Application of combination schemes based on radial basis functions and finite difference to solve stochastic coupled nonlinear time fractional sine-Gordon equations. (English) Zbl 07453272 Comput. Appl. Math. 41, No. 1, Paper No. 10, 16 p. (2022). MSC: 35R60 60H15 26A33 65M06 PDF BibTeX XML Cite \textit{F. Mirzaee} et al., Comput. Appl. Math. 41, No. 1, Paper No. 10, 16 p. (2022; Zbl 07453272) Full Text: DOI OpenURL
Song, Jian; Yao, Jianfeng; Yuan, Wangjun Recent advances on eigenvalues of matrix-valued stochastic processes. (English) Zbl 1480.60056 J. Multivariate Anal. 188, Article ID 104847, 24 p. (2022). Reviewer: Anatoliy Swishchuk (Calgary) MSC: 60F05 60G22 15A18 62H10 60H15 PDF BibTeX XML Cite \textit{J. Song} et al., J. Multivariate Anal. 188, Article ID 104847, 24 p. (2022; Zbl 1480.60056) Full Text: DOI arXiv OpenURL
Mahmoudi, Fatemeh; Tahmasebi, Mahdieh The convergence of a numerical scheme for additive fractional stochastic delay equations with \(H>\frac 12\). (English) Zbl 07431702 Math. Comput. Simul. 191, 219-231 (2022). MSC: 65-XX 60-XX PDF BibTeX XML Cite \textit{F. Mahmoudi} and \textit{M. Tahmasebi}, Math. Comput. Simul. 191, 219--231 (2022; Zbl 07431702) Full Text: DOI OpenURL
Marie, Nicolas Projection estimators of the stationary density of a differential equation driven by the fractional Brownian motion. (English) Zbl 1474.60151 Stat. Probab. Lett. 180, Article ID 109244, 9 p. (2022). MSC: 60H10 60G22 PDF BibTeX XML Cite \textit{N. Marie}, Stat. Probab. Lett. 180, Article ID 109244, 9 p. (2022; Zbl 1474.60151) Full Text: DOI arXiv OpenURL
Emmanuel, Fadugba Sunday; Teniola, Babalola Bayowa On the analysis of Black-Scholes equation for European call option involving a fractional order with generalized two dimensional differential transform method. (English) Zbl 07530053 Fract. Differ. Calc. 11, No. 2, 161-173 (2021). MSC: 26A33 34K37 PDF BibTeX XML Cite \textit{F. S. Emmanuel} and \textit{B. B. Teniola}, Fract. Differ. Calc. 11, No. 2, 161--173 (2021; Zbl 07530053) Full Text: DOI OpenURL
Garra, Roberto; Maltese, F.; Orsingher, Enzo A note on generalized fractional diffusion equations on Poincaré half plane. (English) Zbl 07530049 Fract. Differ. Calc. 11, No. 1, 111-120 (2021). MSC: 35R11 33E12 34A08 PDF BibTeX XML Cite \textit{R. Garra} et al., Fract. Differ. Calc. 11, No. 1, 111--120 (2021; Zbl 07530049) Full Text: DOI OpenURL
Hong, Jialin; Huang, Chuying; Wang, Xu Optimal rate of convergence for two classes of schemes to stochastic differential equations driven by fractional Brownian motions. (English) Zbl 07528288 IMA J. Numer. Anal. 41, No. 2, 1608-1638 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{J. Hong} et al., IMA J. Numer. Anal. 41, No. 2, 1608--1638 (2021; Zbl 07528288) Full Text: DOI OpenURL
Huang, Xiuqi; Wang, Xiangjun Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems. (English) Zbl 07526971 Chaos Solitons Fractals 149, Article ID 111047, 10 p. (2021). MSC: 60G22 60H10 34F05 34A12 34C60 PDF BibTeX XML Cite \textit{X. Huang} and \textit{X. Wang}, Chaos Solitons Fractals 149, Article ID 111047, 10 p. (2021; Zbl 07526971) Full Text: DOI OpenURL
Wang, XiaoTian; Yang, ZiJian; Cao, PiYao; Wang, ShiLin The closed-form option pricing formulas under the sub-fractional Poisson volatility models. (English) Zbl 07526920 Chaos Solitons Fractals 148, Article ID 111012, 16 p. (2021). MSC: 91G20 60G22 PDF BibTeX XML Cite \textit{X. Wang} et al., Chaos Solitons Fractals 148, Article ID 111012, 16 p. (2021; Zbl 07526920) Full Text: DOI OpenURL
Junxiang, Lu; Xue, Hong Adaptive synchronization for fractional stochastic neural network with delay. (English) Zbl 07526176 Adv. Difference Equ. 2021, Paper No. 77, 13 p. (2021). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{L. Junxiang} and \textit{H. Xue}, Adv. Difference Equ. 2021, Paper No. 77, 13 p. (2021; Zbl 07526176) Full Text: DOI OpenURL
Malidareh, Babak Fazli Collocated meshless method for time-fractional diffusion-wave equations. (English) Zbl 07523989 J. Math. Ext. 15, No. 5, Paper No. 24, 25 p. (2021). MSC: 60G22 26A33 65C30 PDF BibTeX XML Cite \textit{B. F. Malidareh}, J. Math. Ext. 15, No. 5, Paper No. 24, 25 p. (2021; Zbl 07523989) Full Text: DOI OpenURL
Banihashemi, Seddigheh; Jafari, Hossein; Babaei, Afshin Numerical solution for a class of time-fractional stochastic delay differential equation with fractional Brownian motion. (English) Zbl 07523981 J. Math. Ext. 15, No. 5, Paper No. 16, 23 p. (2021). MSC: 60G22 26A33 65C30 PDF BibTeX XML Cite \textit{S. Banihashemi} et al., J. Math. Ext. 15, No. 5, Paper No. 16, 23 p. (2021; Zbl 07523981) Full Text: DOI OpenURL
Aryani, Elnaz; Babaei, Afshin; Valinejad, Ali An accurate approach based on modified hat functions for solving a system of fractional stochastic integro-differential equations. (English) Zbl 07523967 J. Math. Ext. 15, No. 5, Paper No. 2, 28 p. (2021). MSC: 60H20 45J05 26A33 65C30 PDF BibTeX XML Cite \textit{E. Aryani} et al., J. Math. Ext. 15, No. 5, Paper No. 2, 28 p. (2021; Zbl 07523967) Full Text: DOI OpenURL
Khalil, Zeina Mahdi; Tudor, Ciprian A. Vibrations of a finite string under a fractional Gaussian random noise. (English) Zbl 07523893 Rev. Roum. Math. Pures Appl. 66, No. 1, 191-208 (2021). MSC: 60G15 60H05 60H15 PDF BibTeX XML Cite \textit{Z. M. Khalil} and \textit{C. A. Tudor}, Rev. Roum. Math. Pures Appl. 66, No. 1, 191--208 (2021; Zbl 07523893) OpenURL
Cai, Chunhao; Zhang, Min A note on inference for the mixed fractional Ornstein-Uhlenbeck process with drift. (English) Zbl 07516095 AIMS Math. 6, No. 6, 6439-6453 (2021). MSC: 60G22 62F10 PDF BibTeX XML Cite \textit{C. Cai} and \textit{M. Zhang}, AIMS Math. 6, No. 6, 6439--6453 (2021; Zbl 07516095) Full Text: DOI OpenURL
Fu, Yongqiang; Yan, Lixu Fully nonlocal stochastic control problems with fractional Brownian motions and Poisson jumps. (English) Zbl 07516024 AIMS Math. 6, No. 5, 5176-5192 (2021). MSC: 60H15 35A01 47H06 60G22 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{L. Yan}, AIMS Math. 6, No. 5, 5176--5192 (2021; Zbl 07516024) Full Text: DOI OpenURL
Wang, Wei; Cai, Guanghui; Tao, Xiangxing Pricing geometric Asian power options in the sub-fractional Brownian motion environment. (English) Zbl 07514608 Chaos Solitons Fractals 145, Article ID 110754, 6 p. (2021). MSC: 58F15 58F17 53C35 PDF BibTeX XML Cite \textit{W. Wang} et al., Chaos Solitons Fractals 145, Article ID 110754, 6 p. (2021; Zbl 07514608) Full Text: DOI OpenURL
Nuugulu, Samuel M.; Gideon, Frednard; Patidar, Kailash C. A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics. (English) Zbl 07514607 Chaos Solitons Fractals 145, Article ID 110753, 17 p. (2021). MSC: 34A08 60G22 65N06 91B25 PDF BibTeX XML Cite \textit{S. M. Nuugulu} et al., Chaos Solitons Fractals 145, Article ID 110753, 17 p. (2021; Zbl 07514607) Full Text: DOI OpenURL
Li, Zhe; Wang, Xiao-Tian Valuation of bid and ask prices for European options under mixed fractional Brownian motion. (English) Zbl 07513633 AIMS Math. 6, No. 7, 7199-7214 (2021). MSC: 91G20 60G22 60H30 PDF BibTeX XML Cite \textit{Z. Li} and \textit{X.-T. Wang}, AIMS Math. 6, No. 7, 7199--7214 (2021; Zbl 07513633) Full Text: DOI OpenURL
Kim, Seong-Tae; Kim, Hyun-Gyoon; Kim, Jeong-Hoon ELS pricing and hedging in a fractional Brownian motion environment. (English) Zbl 07511343 Chaos Solitons Fractals 142, Article ID 110453, 16 p. (2021). MSC: 91-XX 60-XX PDF BibTeX XML Cite \textit{S.-T. Kim} et al., Chaos Solitons Fractals 142, Article ID 110453, 16 p. (2021; Zbl 07511343) Full Text: DOI OpenURL
Litovchenko, V. A. The maximum principle for the equation of local fluctuations of Riesz gravitational fields of purely fractional order. (Ukrainian. English summary) Zbl 07498746 Bukovyn. Mat. Zh. 9, No. 2, 81-91 (2021). MSC: 35R11 60G22 26A33 PDF BibTeX XML Cite \textit{V. A. Litovchenko}, Bukovyn. Mat. Zh. 9, No. 2, 81--91 (2021; Zbl 07498746) Full Text: DOI OpenURL
Jensen, Mathias Højgaard; Joshi, Sarang; Sommer, Stefan Bridge simulation and metric estimation on Lie groups. (English) Zbl 07495242 Nielsen, Frank (ed.) et al., Geometric science of information. 5th international conference, GSI 2021, Paris, France, July 21–23, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12829, 430-438 (2021). MSC: 60G22 22E70 58J65 60J65 PDF BibTeX XML Cite \textit{M. H. Jensen} et al., Lect. Notes Comput. Sci. 12829, 430--438 (2021; Zbl 07495242) Full Text: DOI OpenURL
Youssef, Benkabdi; El Hassan, Lakhel Controllability of impulsive neutral stochastic integro-differential systems driven by fractional Brownian motion with delay and Poisson jumps. (English) Zbl 07493301 Proyecciones 40, No. 6, 1521-1545 (2021). MSC: 35R10 35K90 35R60 47D06 93B05 60G22 60H20 PDF BibTeX XML Cite \textit{B. Youssef} and \textit{L. El Hassan}, Proyecciones 40, No. 6, 1521--1545 (2021; Zbl 07493301) Full Text: DOI OpenURL
Zhang, Wenting; Xu, Wei; Guo, Qin; Zhang, Hongxia Bifurcations in a time-delayed birhythmic biological system with fractional derivative and Lévy noise. (English) Zbl 07491240 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150244, 15 p. (2021). MSC: 34K60 34K37 34K50 34K18 60G65 92B25 PDF BibTeX XML Cite \textit{W. Zhang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150244, 15 p. (2021; Zbl 07491240) Full Text: DOI OpenURL
Dhanalakshmi, K.; Balasubramaniam, P. Stability result for fractional neutral stochastic differential system driven by mixed fractional Brownian motion. (English) Zbl 1482.34185 Int. J. Dyn. Syst. Differ. Equ. 11, No. 5-6, 497-513 (2021). MSC: 34K37 34K20 34K40 34K50 26A33 60G22 PDF BibTeX XML Cite \textit{K. Dhanalakshmi} and \textit{P. Balasubramaniam}, Int. J. Dyn. Syst. Differ. Equ. 11, No. 5--6, 497--513 (2021; Zbl 1482.34185) Full Text: DOI OpenURL
Ahmed, Hamdy M.; El-Borai, Mahmoud M.; Ramadan, Mohamed E. Noninstantaneous impulsive and nonlocal Hilfer fractional stochastic integrodifferential equations with fractional Brownian motion and Poisson jumps. (English) Zbl 07486832 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7-8, 927-942 (2021). MSC: 26A33 34K40 60G22 60H10 93B05 93C10 PDF BibTeX XML Cite \textit{H. M. Ahmed} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7--8, 927--942 (2021; Zbl 07486832) Full Text: DOI OpenURL
Jafari, Hossein; Malinowski, Marek T.; Ebadi, M. J. Fuzzy stochastic differential equations driven by fractional Brownian motion. (English) Zbl 07485411 Adv. Difference Equ. 2021, Paper No. 16, 17 p. (2021). MSC: 60H10 60H05 60H07 60G18 60H30 60A86 PDF BibTeX XML Cite \textit{H. Jafari} et al., Adv. Difference Equ. 2021, Paper No. 16, 17 p. (2021; Zbl 07485411) Full Text: DOI OpenURL
Gassiat, Paul Non-uniqueness for reflected rough differential equations. (English) Zbl 1480.60156 Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 3, 1369-1387 (2021). MSC: 60H10 60L20 PDF BibTeX XML Cite \textit{P. Gassiat}, Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 3, 1369--1387 (2021; Zbl 1480.60156) Full Text: DOI arXiv OpenURL
Biermé, Hermine; Desolneux, Agnès The effect of discretization on the mean geometry of a 2D random field. (Effet de la discrétisation sur la géométrie moyenne des champs aléatoires 2D.) (English. French summary) Zbl 07480736 Ann. Henri Lebesgue 4, 1295-1345 (2021). MSC: 26B15 28A75 60G60 60D05 62M40 60G10 68R01 60G22 PDF BibTeX XML Cite \textit{H. Biermé} and \textit{A. Desolneux}, Ann. Henri Lebesgue 4, 1295--1345 (2021; Zbl 07480736) Full Text: DOI OpenURL
Khalida, Bachir Cherif; Abdeldjebbar, Kandouci A new approach to stochastic integration with respect to fractional Brownian motion for no adapted processes. (English) Zbl 07478723 Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 321-337 (2021). MSC: 60G15 PDF BibTeX XML Cite \textit{B. C. Khalida} and \textit{K. Abdeldjebbar}, Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 321--337 (2021; Zbl 07478723) Full Text: DOI OpenURL
Li, Zhi; Yan, Litan; Xu, Liping Harnack inequalities for functional SDEs driven by subordinate multifractional Brownian motion. (English) Zbl 07475798 Math. Inequal. Appl. 24, No. 4, 1149-1166 (2021). MSC: 60H15 60G15 60H05 60G22 PDF BibTeX XML Cite \textit{Z. Li} et al., Math. Inequal. Appl. 24, No. 4, 1149--1166 (2021; Zbl 07475798) Full Text: DOI OpenURL
Boufoussi, Brahim; Nachit, Yassine On the Besov regularity of the bifractional Brownian motion. (English) Zbl 07473158 Probab. Math. Stat. 41, No. 2, 303-320 (2021). MSC: 60G15 60G22 60G18 PDF BibTeX XML Cite \textit{B. Boufoussi} and \textit{Y. Nachit}, Probab. Math. Stat. 41, No. 2, 303--320 (2021; Zbl 07473158) Full Text: DOI arXiv OpenURL
Jaber, Eduardo Abi; Cuchiero, Christa; Larsson, Martin; Pulido, Sergio A weak solution theory for stochastic Volterra equations of convolution type. (English) Zbl 07473107 Ann. Appl. Probab. 31, No. 6, 2924-2952 (2021). MSC: 60H20 60H05 60G22 60G17 PDF BibTeX XML Cite \textit{E. A. Jaber} et al., Ann. Appl. Probab. 31, No. 6, 2924--2952 (2021; Zbl 07473107) Full Text: DOI arXiv OpenURL
Ravikumar, K.; Ramkumar, K.; Anguraj, A. Null controllability of nonlocal Sobolev-type Hilfer fractional stochastic differential system driven by fractional Brownian motion and Poisson jumps. (English) Zbl 1478.93062 J. Appl. Nonlinear Dyn. 10, No. 4, 617-626 (2021). MSC: 93B05 35R11 93C10 PDF BibTeX XML Cite \textit{K. Ravikumar} et al., J. Appl. Nonlinear Dyn. 10, No. 4, 617--626 (2021; Zbl 1478.93062) Full Text: DOI OpenURL
Dai, Chao-Qing; Wu, Gangzhou; Li, Hui-Jun; Wang, Yue-Yue Wick-type stochastic fractional solitons supported by quadratic-cubic nonlinearity. (English) Zbl 1481.78020 Fractals 29, No. 7, Article ID 2150192, 11 p. (2021). MSC: 78A60 78A40 35C08 35B36 33E12 60G22 60H40 35Q55 35R60 26A33 35R11 PDF BibTeX XML Cite \textit{C.-Q. Dai} et al., Fractals 29, No. 7, Article ID 2150192, 11 p. (2021; Zbl 1481.78020) Full Text: DOI OpenURL
Chang, Yen-Ching An efficient maximum likelihood estimator for two-dimensional fractional Brownian motion. (English) Zbl 07465356 Fractals 29, No. 1, Article ID 2150025, 15 p. (2021). MSC: 62-XX PDF BibTeX XML Cite \textit{Y.-C. Chang}, Fractals 29, No. 1, Article ID 2150025, 15 p. (2021; Zbl 07465356) Full Text: DOI OpenURL
Yang, Min Existence uniqueness of mild solutions for \(\psi \)-Caputo fractional stochastic evolution equations driven by fBm. (English) Zbl 07465151 J. Inequal. Appl. 2021, Paper No. 170, 18 p. (2021). MSC: 00-XX PDF BibTeX XML Cite \textit{M. Yang}, J. Inequal. Appl. 2021, Paper No. 170, 18 p. (2021; Zbl 07465151) Full Text: DOI OpenURL
Yang, Min; Gu, Haibo Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion. (English) Zbl 07464987 J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021). MSC: 00-XX PDF BibTeX XML Cite \textit{M. Yang} and \textit{H. Gu}, J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021; Zbl 07464987) Full Text: DOI OpenURL