×

Theory choice, theory change, and inductive truth-conduciveness. (English) Zbl 1477.03010

Summary: (I) Synchronic norms of theory choice, a traditional concern in scientific methodology, restrict the theories one can choose in light of given information. (II) Diachronic norms of theory change, as studied in belief revision, restrict how one should change one’s current beliefs in light of new information. (III) Learning norms concern how best to arrive at true beliefs. In this paper, we undertake to forge some rigorous logical relations between the three topics. Concerning (III), we explicate inductive truth conduciveness in terms of optimally direct convergence to the truth, where optimal directness is explicated in terms of reversals and cycles of opinion prior to convergence. Concerning (I), we explicate Ockham’s razor and related principles of choice in terms of the information topology of the empirical problem context and show that the principles are necessary for reversal or cycle optimal convergence to the truth. Concerning (II), we weaken the standard principles of agm belief revision theory in intuitive ways that are also necessary (and in some cases, sufficient) for reversal or cycle optimal convergence. Then we show that some of our weakened principles of change entail corresponding principles of choice, completing the triangle of relations between (I), (II), and (III).

MSC:

03A05 Philosophical and critical aspects of logic and foundations
03A10 Logic in the philosophy of science
03B42 Logics of knowledge and belief (including belief change)
68Q32 Computational learning theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baker, A., Simplicity, in E. N. Zalta, (ed.), The Stanford Encyclopedia of Philosophy, fall 2013 edn., 2013.
[2] Baltag, A., N. Gierasimczuk, and S. Smets, On the solvability of inductive problems: a study in epistemic topology (forthcoming), in Proceedings of the fifteenth conference on Theoretical Aspects of Rationality and Knowledge, 2015. · Zbl 1483.68367
[3] Baltag, A., N. Gierasimczuk, and S. Smets, Truth-tracking by belief revision (to appear), Studia Logica, 2018. · Zbl 1439.03039
[4] Carlucci, L., and J. Case, On the necessity of U-Shaped learning, Topics in Cognitive Science 5(1):56-88, 2013. · doi:10.1111/tops.12002
[5] Carlucci, Lorenzo; Case, John; Jain, Sanjay; Stephan, Frank, Non U-Shaped Vacillatory and Team Learning, 241-255 (2005), Berlin, Heidelberg · Zbl 1168.68395
[6] Carnap, R., On inductive logic, Philosophy of Science 12(2):72, 1945. · Zbl 0063.00709 · doi:10.1086/286851
[7] Case, J., and C. Smith, Comparison of identification criteria for machine inductive inference, Theoretical Computer Science 25(2):193-220, 1983. · Zbl 0524.03025 · doi:10.1016/0304-3975(83)90061-0
[8] de Brecht, M., and A. Yamamoto, Interpreting learners as realizers for \[{\Sigma }_2^0\] Σ20-measurable functions, (Manuscript), 2009.
[9] Douglas, H., Inductive risk and values in science, Philosophy of Science 67(4):559-579, 2000. · doi:10.1086/392855
[10] Gärdenfors, P., Knowledge in Flux, MIT Press, Cambridge, 1988. · Zbl 1229.03008
[11] Glymour, C., Theory and Evidence, Princeton University Press, Princeton, 1980.
[12] Gold, E. M., Language identification in the limit, Information and Control 10(5):447-474, 1967. · Zbl 0259.68032 · doi:10.1016/S0019-9958(67)91165-5
[13] Hempel, Carl G., Valuation and Objectivity in Science, 73-100 (1983), Dordrecht · doi:10.1007/978-94-009-7055-7_4
[14] Jain, S., D. N. Osherson, J. S. Royer, and A. Sharma, Systems that Learn: An Introduction to Learning Theory, MIT Press, Cambridge, 1999.
[15] Kelly, K. T., The Logic of Reliable Inquiry, Oxford University Press, Oxford, 1996. · Zbl 0910.03023
[16] Kelly, K. T., Justification as truth-finding efficiency: How Ockham’s razor works, Minds and Machines 14(4):485-505, 2004. · doi:10.1023/B:MIND.0000045993.31233.63
[17] Kelly, K. T., A topological theory of learning and simplicity, Manuscript, 2005.
[18] Kelly, Kevin T., How Simplicity Helps You Find the Truth without Pointing at it, 111-143 (2007), Dordrecht · Zbl 1139.03306 · doi:10.1007/978-1-4020-6127-1_4
[19] Kelly, K. T., A new solution to the puzzle of simplicity, Philosophy of Science 74(5):561-573, 2007. · doi:10.1086/525604
[20] Kelly, K. T., Ockham’s razor, empirical complexity, and truth-finding efficiency, Theoretical Computer Science 383(2):270-289, 2007. · Zbl 1124.68093 · doi:10.1016/j.tcs.2007.04.009
[21] Kelly, K. T., Simplicity, truth, and the unending game of science, in T. Raesch, J. van Benthem, S. Bold, B. Loewe, (eds.), Infinite Games: Foundations of the Formal Sciences V, College Press, New York, 2007. · Zbl 1151.03311
[22] Kelly, K. T., Ockham’s Razor, Truth, and Information, Elsevier, Dordrecht, 2008. · doi:10.1016/B978-0-444-51726-5.50014-5
[23] Kelly, K. T., Simplicity, truth and probability, in P. S. Bandyopadhyay, and M. Forster, (eds.), Handbook of the Philosophy of Science. Volume 7: Philosophy of Statistics, North Holland, Amsterdam, 2011. · Zbl 1230.62002
[24] Kelly, K. T., K. Genin, and H. Lin, Simplicity, truth, and topology, Manuscript, 2014.
[25] Kelly, K. T., and C. Glymour, Why probability does not capture the logic of scientific justification, in C. Hitchcock, (ed.), Debates in the Philosophy of Science, Blackwell, New York, 2004, pp. 94-114.
[26] Laudan, L., Science and Values, vol. 87, Cambridge Univ Press, Cambridge, 1984.
[27] Lin, Hanti, and Kevin T Kelly, Propositional reasoning that tracks probabilistic reasoning, Journal of Philosophical Logic 41(6):957-981, 2012. · Zbl 1272.03032 · doi:10.1007/s10992-012-9237-3
[28] Luo, W., and O. Schulte, Mind change efficient learning, Information and Computation 204(6):989-1011, 2006. · Zbl 1110.68055 · doi:10.1016/j.ic.2006.02.004
[29] Martin, E., and D. N. Osherson, Elements of Scientific Inquiry, MIT Press, Cambridge, 1998.
[30] Morrison, M., Unifying Scientific Theories: Physical Concepts and Mathematical Structures, Cambridge University Press, Cambridge, 2007.
[31] Osherson, D. N., M. Stob, and S. Weinstein, Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists, The MIT Press, Cambridge, 1986.
[32] Popper, K. R., The Logic of Scientific Discovery, Hutchinson, London, 1959. · Zbl 0083.24104
[33] Putnam, H., Trial and error predicates and the solution to a problem of Mostowski, Journal of Symbolic Logic 30:49-57, 1965. · Zbl 0193.30102 · doi:10.2307/2270581
[34] Rott, H., Two dogmas of belief revision, The Journal of Philosophy 97(9):503-522, 2000. · doi:10.2307/2678489
[35] Schurz, Gerhard, Abductive Belief Revision in Science, 77-104 (2010), Dordrecht · Zbl 1260.03010 · doi:10.1007/978-90-481-9609-8_4
[36] Sharma, A., F. Stephan, and Y. Ventsov, Generalized notions of mind change complexity, in Proceedings of the Tenth Annual Conference on Computational Learning Theory, ACM, 1997, pp. 96-108. · Zbl 1076.68066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.