×

On the viscous flows of leak-out and spherical cap natation. (English) Zbl 1419.76755

Summary: This paper deals with the hydrodynamics of a viscous liquid passing through the hole in a deflating hollow sphere. I employ the method of complementary integrals and calculate in closed form the pressure and streamfunction for the axisymmetric, creeping motion coming from changes in radius. The resulting flow fields describe the motion of a deformable spherical cap in a viscous environment, where the deformations include changes in the size of the spherical cap, the size of the hole and translation of the body along the axis of symmetry. The calculations yield explicit expressions for the jumps in pressure and resistance coefficients for the combined deformations. The equation for the translation force shows that a freely suspended spherical cap is able to propel as an active swimmer. The expression for pressure contains the classic Sampson flow rate equation as a limiting case, but simulations show that the pressure must also account for the velocity of hole widening to correctly predict outflow rates in physiology. Movies based on the closed-form solutions visualize the flow fields and pressures as part of physical processes.

MSC:

76Z10 Biopropulsion in water and in air
76D07 Stokes and related (Oseen, etc.) flows
92C40 Biochemistry, molecular biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alam Shibly, S. U.; Ghatak, C.; Sayem Karal, M. A.; Moniruzzaman, M.; Yamazaki, M., Experimental estimation of membrane tension induced by osmotic pressure, Biophys. J., 111, 2190-2201, (2016) · doi:10.1016/j.bpj.2016.09.043
[2] Arroyo, M.; Desimone, A., Relaxation dynamics of fluid membranes, Phys. Rev. E, 79, (2009)
[3] Arroyo, M.; Trepat, X., Hydraulic fracturing in cells and tissues: fracking meets cell biology, Curr. Opin. Cell Biol., 44, 1-6, (2017) · doi:10.1016/j.ceb.2016.11.001
[4] Aubin, C. A.; Ryham, R. J., Stokes flow for a shrinking pore, J. Fluid Mech., 788, 228-245, (2016) · Zbl 1381.76422 · doi:10.1017/jfm.2015.699
[5] Becker, L. E.; Koehler, S. A.; Stone, H. A., On self-propulsion of micro-machines at low Reynolds number: Purcell’s three-link swimmer, J. Fluid Mech., 490, 15-35, (2003) · Zbl 1063.76690 · doi:10.1017/S0022112003005184
[6] Bocher, M., An Introduction to the Study of Integral Equations, (1926), Cambridge University Press · JFM 52.0385.01
[7] Brenner, H., Dissipation of energy due to solid particles suspended in a viscous liquid, Phys. Fluids, 1, 4, 338-346, (1958) · Zbl 0082.39602 · doi:10.1063/1.1705892
[8] Brenner, M. P.; Gueyffier, D., On the bursting of viscous films, Phys. Fluids, 11, 3, 737-739, (1999) · Zbl 1147.76338 · doi:10.1063/1.869942
[9] Brochard-Wyart, F.; De Gennes, P. G.; Sandre, O., Transient pores in stretched vesicles: role of leak-out, Physica A, 278, 1-2, 32-51, (2000) · doi:10.1016/S0378-4371(99)00559-2
[10] Chabanon, M.; Ho, J. C. S.; Liedberg, B.; Parikh, A. N.; Rangamani, P., Pulsatile lipid vesicles under osmotic stress, Biophys. J., 112, 8, 1682-1691, (2017) · doi:10.1016/j.bpj.2017.03.018
[11] Chang, C.-W.; Chiang, C.-W.; Jackson, M. B., Fusion pores and their control of neurotransmitter and hormone release, J. Gen. Phys., 149, 1-22, (2017) · doi:10.1085/jgp.201611724
[12] Childress, S., A thermodynamic efficiency for Stokesian swimming, J. Fluid Mech., 705, 77-97, (2012) · Zbl 1250.76204 · doi:10.1017/jfm.2011.561
[13] Crowdy, D., Flipping and scooping of curved 2D rigid fibers in simple shear: the jeffery equations, Phys. Fluids, 28, 5, (2016) · doi:10.1063/1.4948776
[14] Dagan, Z.; Weinbaum, S.; Pfeffer, R., An infinite-series solution for the creeping motion through an orifice of finite length, J. Fluid Mech., 115, 505-523, (1982) · Zbl 0492.76052 · doi:10.1017/S0022112082000883
[15] Dancer, E. N.; Daners, D.; Hauer, D., A Liouville theorem for p-harmonic functions on exterior domains, Positivity, 19, 3, 577-586, (2015) · Zbl 1329.35086 · doi:10.1007/s11117-014-0316-2
[16] Debrégeas, G.; Martin, P.; Brochard-Wyart, F., Viscous bursting of suspended films, Phys. Rev. Lett., 75, 21, 3886-3889, (1995) · doi:10.1103/PhysRevLett.75.3886
[17] Dimova, R.; Bezlyepkina, N.; Jordö, M. D.; Knorr, R. L.; Riske, K. A.; Staykova, M.; Vlahovska, P. M.; Yamamoto, T.; Yang, P.; Lipowsky, R., Vesicles in electric fields: some novel aspects of membrane behavior, Soft Matt., 5, 3201-3212, (2009) · doi:10.1039/b901963d
[18] Dimova, R. & Riske, K. A.2016Electrodeformation, electroporation, and electrofusion of giant unilamellar vesicles. In Handbook of Electroporation (ed. Damijan, M.). Springer.
[19] Dorrepaal, J. M., The stokes resistance of a spherical cap to translational and rotational motions in a linear shear flow, J. Fluid Mech., 84, 2, 265-279, (1978) · Zbl 0381.76041 · doi:10.1017/S0022112078000154
[20] Dorrepaal, J. M., The resistance tensors for a spherical cap in Stokes flow, Q. J. Mech. Appl. Maths, 37, 355-371, (1984) · Zbl 0567.76011 · doi:10.1093/qjmam/37.3.355
[21] Dorrepaal, J. M.; O’Neill, M. E.; Ranger, K. B., Axisymmetric Stokes flow past a spherical cap, J. Fluid Mech., 75, 2, 273-286, (1976) · Zbl 0361.76033 · doi:10.1017/S0022112076000219
[22] Eisenberg, R. S., From structure to function in open ionic channels, J. Mem. Bio., 171, 1, 1-24, (1999) · doi:10.1007/s002329900554
[23] Evans, A. A.; Spagnolie, S. E.; Lauga, E., Stokesian jellyfish: viscous locomotion of bilayer vesicles, Soft Matt., 6, 1737-1747, (2010) · doi:10.1039/b924548k
[24] Evans, E.; Rawicz, W., Entropy-driven tension and bending elasticity in condensed-fluid membranes, Phys. Rev. Lett., 64, 2094-2097, (1990) · doi:10.1103/PhysRevLett.64.2094
[25] Fournier, J.-B., On the stress and torque tensors in fluid membranes, Soft Matt., 3, 883-888, (2007) · doi:10.1039/b701952a
[26] Fournier, J.-B., On the hydrodynamics of bilayer membranes, Intl J. Nonlinear Mech., 75, 67-76, (2015) · doi:10.1016/j.ijnonlinmec.2015.02.006
[27] Fournier, J.-B.; Barbetta, C., Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes, Phys. Rev. Lett., 100, (2008) · doi:10.1103/PhysRevLett.100.078103
[28] Gordillo, L.; Agbaglah, G.; Duchemin, L.; Josserand, C., Asymptotic behavior of a retracting two-dimensional fluid sheet, Phys. Fluids, 23, 12, (2011) · doi:10.1063/1.3663577
[29] Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, (1965), Prentice Hall
[30] Helfield, B.; Chen, X.; Watkins, S. C.; Villanueva, F. S., Biophysical insight into mechanisms of sonoporation, Proc. Natl Acad. Sci. USA, 113, 36, 9983-9988, (2016) · doi:10.1073/pnas.1606915113
[31] Hille, B., Ionic Channels of Excitable Membranes, (2001), Sinauer Associates
[32] Ho, J. C. S.; Rangamani, P.; Liedberg, B.; Parikh, A. N., Mixing water, transducing energy, and shaping membranes: autonomously self-regulating giant vesicles, Langmuir, 32, 9, 2151-2163, (2016) · doi:10.1021/acs.langmuir.5b04470
[33] Honerkamp-Smith, A. R.; Woodhouse, F. G.; Kantsler, V.; Goldstein, R. E., Membrane viscosity determined from shear-driven flow in giant vesicles, Phys. Rev. Lett., 111, 3, (2013) · doi:10.1103/PhysRevLett.111.038103
[34] Ilton, M.; Dimaria, C.; Dalnoki-Veress, K., Direct measurement of the critical pore size in a model membrane, Phys. Rev. Lett., 117, (2016)
[35] Jackson, D. P.; Sleyman, S., Analysis of a deflating soap bubble, Am. J. Phys., 78, 990-994, (2010) · doi:10.1119/1.3442800
[36] Jensen, K. H.; Valente, A. X. C. N.; Stone, H. A., Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia, Phys. Fluids, 26, 5, (2014) · doi:10.1063/1.4876937
[37] Karatekin, E.; Sandre, O.; Guitouni, H.; Borghi, N.; Puech, P.-H.; Brochard-Wyart, F., Cascades of transient pores in giant vesicles: line tension and transport, Biophys. J., 84, 3, 1734-1749, (2003) · doi:10.1016/S0006-3495(03)74981-9
[38] Lauga, E.; Davis, A. M. J., Viscous Marangoni propulsion, J. Fluid Mech., 705, 120-133, (2012) · Zbl 1250.76209 · doi:10.1017/jfm.2011.484
[39] Leal, L. G., Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, (2006), Cambridge University Press · Zbl 1205.76003
[40] Lira, R. B.; Steinkühler, J.; Knorr, R. L.; Dimova, R.; Riske, K. A., Posing for a picture: vesicle immobilization in agarose gel, Sci. Rep., 25254, (2016) · doi:10.1038/srep25254
[41] Manoussaki, D.; Shin, W. D.; Waterman, C. M.; Chadwick, R. S., Cytosolic pressure provides a propulsive force comparable to actin polymerization during lamellipod protrusion, Sci. Rep., 5, 12314, (2015) · doi:10.1038/srep12314
[42] Martínez-Balbuena, L.; Hernández-Zapata, E.; Santamaría-Holek, I., Onsager’s irreversible thermodynamics of the dynamics of transient pores in spherical lipid vesicles, Eur. Biophys. J., 44, 473-481, (2015) · doi:10.1007/s00249-015-1051-8
[43] Moffatt, H. K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18, 1, 1-18, (1964) · Zbl 0118.20501 · doi:10.1017/S0022112064000015
[44] Onsager, L., Reciprocal relations in irreversible processes. Part I, Phys. Rev., 405-426, (1931) · JFM 57.1168.10 · doi:10.1103/PhysRev.37.405
[45] Onsager, L., Reciprocal relations in irreversible processes. Part II, Phys. Rev., 2265-2279, (1931) · Zbl 0004.18303 · doi:10.1103/PhysRev.38.2265
[46] Peyret, A.; Ibarboure, E.; Tron, A.; Beauté, L.; Rust, R.; Sandre, O.; Mcclenaghan, N. D.; Lecommandoux, S., Polymersome popping by light-induced osmotic shock under temporal, spatial, and spectral control, Angew. Chem. Intl Ed., 56, 6, 1566-1570, (2017) · doi:10.1002/anie.201609231
[47] Poignard, C., Silve, A. & Wegner, L.2016Different approaches used in modeling of cell membrane electroporation. In Handbook of Electroporation (ed. Damijan, M.). Springer.
[48] Portet, R.; Dimova, R., A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition, Biophys. J., 99, 10, 3264-3273, (2010) · doi:10.1016/j.bpj.2010.09.032
[49] Puech, P.-H.; Brochard-Wyart, F., Membrane tensiometer for heavy giant vesicles, Eur. Phys. J. E, 15, 2, 127-132, (2004)
[50] Purcell, E. M., Life at low Reynolds number, Am. J. Phys., 45, 3-11, (1977) · doi:10.1119/1.10903
[51] Ranger, K. B., The Stokes drag for asymmetric flow past a spherical cap, Z. Angew. Math. Phys., 24, 6, 801-809, (1973) · Zbl 0275.76008 · doi:10.1007/BF01590790
[52] Reyssat, É.; Quéré, D., Bursting of a fluid film in a viscous environment, Europhys. Lett., 76, 2, 236, (2006) · doi:10.1209/epl/i2006-10262-x
[53] Riske, K. A.; Dimova, R., Electro-deformation and poration of giant vesicles viewed with high temporal resolution, Biophys. J., 88, 2, 1143-1155, (2005) · doi:10.1529/biophysj.104.050310
[54] Salipante, P. F.; Vlahovska, P. M., Vesicle deformation in DC electric pulses, Soft Matt., 10, 19, 3386-3393, (2014) · doi:10.1039/C3SM52870G
[55] Sampson, R. A., On Stokes’s current function, Phil. Trans. R. Soc. Lond. A, 182, 449-518, (1891) · JFM 23.0982.01 · doi:10.1098/rsta.1891.0012
[56] Sandre, O.; Moreaux, L.; Brochard-Wyart, F., Dynamics of transient pores in stretched vesicles, Proc. Natl Acad. Sci. USA, 96, 10591-10596, (1999) · doi:10.1073/pnas.96.19.10591
[57] Sankhagowit, S.; Wu, S.-H.; Biswas, R.; Riche, C. T.; Povinelli, M. L.; Malmstadt, N., The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions, B.B.A.-Biomembranes, 1838, 10, 2615-2624, (2014) · doi:10.1016/j.bbamem.2014.06.020
[58] Savva, N.; Bush, J. W. M., Viscous sheet retraction, J. Fluid Mech., 626, 211-240, (2009) · Zbl 1171.76326 · doi:10.1017/S0022112009005795
[59] Schroeder, A.; Kost, J.; Barenholz, Y., Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes, Chem. Phys. Lipids, 162, 1-2, 1-16, (2009) · doi:10.1016/j.chemphyslip.2009.08.003
[60] Sengela, J. T.; Wallacea, M. I., Imaging the dynamics of individual electropores, P. Natl Acad. Sci. USA, 113, 5281-5286, (2016) · doi:10.1073/pnas.1517437113
[61] Singer, A.; Schuss, Z.; Holcman, D.; Eisenberg, R. S., Narrow escape. Part I, J. Stat. Phys., 122, 3, 437-463, (2006) · Zbl 1149.82335 · doi:10.1007/s10955-005-8026-6
[62] Strutt, J. W., Some general theorems relating to vibrations, Proc. Lond. Math. Soc., s1‐4, 1, 357-368, (1871) · JFM 05.0537.01 · doi:10.1112/plms/s1-4.1.357
[63] Weissberg, H. L., End correction for slow viscous flow through long tubes, Phys. Fluids, 5, 9, 1033-1036, (1962) · Zbl 0109.18701 · doi:10.1063/1.1724469
[64] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis, (2006), Cambridge University Press · JFM 45.0433.02
[65] Zagier, D., The Dilogarithm Function, (2007), Springer · Zbl 1176.11026 · doi:10.1007/978-3-540-30308-4_1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.