×

Numerical analysis for an optimal control of bidomain-bath model. (English) Zbl 1368.65093

Summary: This work is concerned with the study of the convergence analysis for an optimal control of bidomain-bath model. The bidomain-bath model equations describe the cardiac bioelectric activity at the tissue and bath volumes where the control acts at the boundary of the tissue domain. We establish the existence and convergence of the unique weak solution of the direct bidomain-bath model by a discrete Galerkin approach. The convergence proof is based on deriving a series of a priori estimates and using a general \(L^2\)-compactness criterion. Moreover, the well-posedness of the adjoint problem and the first order necessary optimality conditions are shown. Comparing to the direct problem, the convergence proof of the adjoint problem is based on using a general \(L^1\)-compactness criterion. The numerical tests are demonstrated which achieve the successful cardiac defibrillation by utilizing less total current. Finally, the robustness of the Newton optimization algorithm is presented for different finer mesh geometries.

MSC:

65K10 Numerical optimization and variational techniques
49J20 Existence theories for optimal control problems involving partial differential equations
49M15 Newton-type methods
92C30 Physiology (general)

Software:

DUNE
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Ainseba, B.; Bendahmane, M.; Ruiz-Baier, R., Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology, J. Math. Anal. Appl., 388, 1, 231-247 (2012) · Zbl 1234.49004
[2] Andreianov, B.; Bendahmane, M.; Karlsen, K. H.; Pierre, C., Convergence of discrete duality finite volume schemes for the cardiac bidomain model, Netw. Heterog. Media, 6, 2, 195-240 (2011) · Zbl 1328.65190
[3] Andreianov, B.; Bendahmane, M.; Quarteroni, A.; Ruiz-Baier, R., Solvability analysis and numerical approximation of linearized cardiac electromechanics, Math. Models Methods Appl. Sci., 25, 05, 959-993 (2015) · Zbl 1309.74049
[4] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing, 82, 2, 121-138 (July 2008) · Zbl 1151.65088
[5] Bendahmane, M.; Chamakuri, N.; Comte, E.; Aïnseba, B., A 3d boundary optimal control for the bidomain-bath system modeling the thoracic shock therapy for cardiac defibrillation, J. Math. Anal. Appl., 437, 2, 972-998 (2016) · Zbl 1342.35404
[6] Bendahmane, M.; Karlsen, K. H., Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1, 1, 185-218 (2006) · Zbl 1179.35162
[7] Blatt, M., A Parallel Algebraic Multigrid Method for Elliptic Problems with Highly Discontinuous Coefficients (2010), Ruprechts-Karls-Universität: Ruprechts-Karls-Universität Heidelberg, PhD thesis · Zbl 1194.65002
[8] Boulakia, M.; Fernández, M. A.; Gerbeau, J.-F.; Zemzemi, N., A coupled system of PDEs and ODEs arising in electrocardiograms modeling, Appl. Math. Res. Express. AMRX (2008) · Zbl 1177.35236
[9] Bourgault, Y.; Coudiére, Y.; Pierre, C., Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10, 1, 458-482 (2009) · Zbl 1154.35370
[10] Brandao, A. J.; Fernandez-Cara, E.; Magalhaes, P. M.; Rojas-Medar, M. A., Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, 2008, Article 164 pp. (2008), 20 pp [electronic only] · Zbl 1173.35355
[11] Brezis, H., Analyse fonctionnelle, théorie et applications (1983), Masson: Masson Paris · Zbl 0511.46001
[12] Casas, E.; Ryll, C.; Tröltzsch, F., Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems, Comput. Methods Appl. Math., 13, 4, 415-442 (2013) · Zbl 1393.49019
[13] Chamakuri, N.; Kunisch, K., Primal-dual active set strategy for large scale optimization of cardiac defibrillation, Appl. Math. Comput., 292, 178-193 (2017) · Zbl 1410.49030
[14] Chamakuri, N.; Kunisch, K.; Plank, G., Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology, Comput. Optim. Appl., 49, 149-178 (2011) · Zbl 1226.49024
[15] Chamakuri, N.; Kunisch, K.; Plank, G., Optimal control approach to termination of re-entry waves in cardiac electrophysiology, J. Math. Biol., 1-30 (2013) · Zbl 1319.92021
[16] Chamakuri, N.; Kunisch, K.; Plank, G., PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry, Int. J. Numer. Methods Biomed. Eng. (2015)
[17] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466 (July 1961)
[18] Franzonea, P. C.; Savaré, G., Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, (Evolution Equations, Semigroups and Functional Analysis. Evolution Equations, Semigroups and Functional Analysis, Progress in Nonlinear Differential Equations and Their Applications, vol. 50 (2006), Birkhäuser Verlag), 49-78 · Zbl 1036.35087
[19] Henriquez, C. S., Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng., 21, 1 (1993)
[20] Hooks, D. A.; Tomlinson, K. A.; Marsden, S. G.; LeGrice, I. J.; Smaill, B. H.; Pullan, A. J.; Hunter, P. J., Cardiac microstructure: implications for electrical propagation and defibrillation in the heart, Circ. Res., 91, 4, 331-338 (2002)
[21] Kruzhkov, S. N., Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof, Mat. Zametki, 6, 97-108 (1969) · Zbl 0177.14205
[22] Kunisch, K.; Wagner, M., Optimal control of the bidomain system (III): existence of minimizers and first-order optimality conditions, ESAIM Math. Model. Numer. Anal., 47, 1077 (2013) · Zbl 1275.49005
[23] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[24] Mitchell, C.; Schaeffer, D., A two-current model for the dynamics of cardiac membrane, Bull. Math. Biol., 65, 5, 767-793 (2003) · Zbl 1334.92097
[25] Plonsey, R., Bioelectric sources arising in excitable fibers (ALZA lecture), Ann. Biomed. Eng., 16, 6, 519-546 (1988)
[26] Roth, B. J., Electrical conductivity values used with the bidomain model of cardiac tissue, IEEE Trans. Biomed. Eng., 44, 4, 326-328 (Apr 1997)
[27] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (2001), AMS Chelsea Publ.: AMS Chelsea Publ. Providence (RI), Impression révisée de la 3ème édition parue en 1984 · Zbl 0981.35001
[28] Tung, L., A Bi-domain Model for Describing Ischemic Myocardial DC Potentials (1978), MIT: MIT Cambridge, MA, PhD thesis
[29] Veneroni, M., Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl., 10, 2, 849-868 (2009) · Zbl 1167.35403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.