Boyko, Vyacheslav M.; Kunzinger, Michael; Popovych, Roman O. Parameter-dependent linear ordinary differential equations and topology of domains. (English) Zbl 07330809 J. Differ. Equations 284, 546-575 (2021). MSC: 34A30 34A05 PDF BibTeX XML Cite \textit{V. M. Boyko} et al., J. Differ. Equations 284, 546--575 (2021; Zbl 07330809) Full Text: DOI
Ferčec, Brigita; Giné, Jaume Formal Weierstrass integrability for a Liénard differential system. (English) Zbl 07329654 J. Math. Anal. Appl. 499, No. 1, Article ID 125016, 14 p. (2021). MSC: 34A34 34A05 PDF BibTeX XML Cite \textit{B. Ferčec} and \textit{J. Giné}, J. Math. Anal. Appl. 499, No. 1, Article ID 125016, 14 p. (2021; Zbl 07329654) Full Text: DOI
Kozlov, V. V. Linear nonautonomous systems of differential equations with a quadratic integral. (English. Russian original) Zbl 07327884 Differ. Equ. 57, No. 2, 173-181 (2021); translation from Differ. Uravn. 57, No. 2, 187-195 (2021). MSC: 34A30 34A05 34D20 PDF BibTeX XML Cite \textit{V. V. Kozlov}, Differ. Equ. 57, No. 2, 173--181 (2021; Zbl 07327884); translation from Differ. Uravn. 57, No. 2, 187--195 (2021) Full Text: DOI
Branquinho, Amílcar; Foulquié-Moreno, Ana; Mañas-Baena, Manuel Riemann-Hilbert problem and matrix biorthogonal polynomials. (English) Zbl 07326234 Marcellán, Francisco (ed.) et al., Orthogonal polynomials: current trends and applications. Proceedings of the 7th EIBPOA conference, Universidad Carlos III de Madrid, Leganés, Spain, July 3–6, 2018. Cham: Springer (ISBN 978-3-030-56189-5/pbk; 978-3-030-56190-1/ebook). SEMA SIMAI Springer Series 22, 1-15 (2021). MSC: 33D45 15A18 34A05 42C05 PDF BibTeX XML Cite \textit{A. Branquinho} et al., SEMA SIMAI Springer Ser. 22, 1--15 (2021; Zbl 07326234) Full Text: DOI
Ahmadova, Arzu; Huseynov, Ismail T.; Fernandez, Arran; Mahmudov, Nazim I. Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations. (English) Zbl 07323678 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105735, 23 p. (2021). MSC: 34A05 34A08 34A30 33E12 PDF BibTeX XML Cite \textit{A. Ahmadova} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105735, 23 p. (2021; Zbl 07323678) Full Text: DOI
Ginoux, Jean-Marc; Llibre, Jaume; Valls, Claudia Dynamics and Darboux integrability of the \(D_2\) polynomial vector fields of degree 2 in \(\mathbb{R}^3\). (English) Zbl 07321623 Math. Phys. Anal. Geom. 24, No. 1, Paper No. 1, 16 p. (2021). Reviewer: Regilene Oliveira (São Paulo) MSC: 34A05 34C05 34C14 PDF BibTeX XML Cite \textit{J.-M. Ginoux} et al., Math. Phys. Anal. Geom. 24, No. 1, Paper No. 1, 16 p. (2021; Zbl 07321623) Full Text: DOI
Yin, Songting; Mo, Xiaohuan Some results on complete Finsler measure spaces. (English) Zbl 07317177 J. Math. Anal. Appl. 497, No. 1, Article ID 124846, 17 p. (2021). MSC: 35A23 35P05 35R01 PDF BibTeX XML Cite \textit{S. Yin} and \textit{X. Mo}, J. Math. Anal. Appl. 497, No. 1, Article ID 124846, 17 p. (2021; Zbl 07317177) Full Text: DOI
Malykh, M. D.; Sevastianov, L. A.; Yu, Y. On symbolic integration of algebraic functions. (English) Zbl 07312494 J. Symb. Comput. 104, 563-579 (2021). MSC: 68W30 12H05 34A05 34A09 65D20 11Y40 13P10 PDF BibTeX XML Cite \textit{M. D. Malykh} et al., J. Symb. Comput. 104, 563--579 (2021; Zbl 07312494) Full Text: DOI
León, Víctor; Scárdua, Bruno A geometric-analytic study of linear differential equations of order two. (English) Zbl 07311271 Electron Res. Arch. 29, No. 2, 2101-2127 (2021). Reviewer: Rodica Luca (Iaşi) MSC: 34A05 34A25 34A30 34A26 PDF BibTeX XML Cite \textit{V. León} and \textit{B. Scárdua}, Electron Res. Arch. 29, No. 2, 2101--2127 (2021; Zbl 07311271) Full Text: DOI
Calogero, F.; Payandeh, F. Solvable systems of two coupled first-order ODEs with homogeneous cubic polynomial right-hand sides. (English) Zbl 07306531 J. Math. Phys. 62, No. 1, 012701, 21 p. (2021). MSC: 34A05 34A12 PDF BibTeX XML Cite \textit{F. Calogero} and \textit{F. Payandeh}, J. Math. Phys. 62, No. 1, 012701, 21 p. (2021; Zbl 07306531) Full Text: DOI
Leta, Temesgen Desta; Liu, Wenjun; Ding, Jian Existence of periodic, solitary and compacton travelling wave solutions of a \((3+1)\)-dimensional time-fractional nonlinear evolution equations with applications. (English) Zbl 07302481 Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021). Reviewer: Xiang-Sheng Wang (Lafayette) MSC: 34A05 34C23 34C37 34C25 35C07 35R11 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021; Zbl 07302481) Full Text: DOI
Zheng, Hang; Xia, Yonghui; Bai, Yuzhen; Wu, Luoyi Travelling wave solutions of the general regularized long wave equation. (English) Zbl 07302071 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 8, 21 p. (2021). MSC: 34A05 34C23 35C07 35L05 PDF BibTeX XML Cite \textit{H. Zheng} et al., Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 8, 21 p. (2021; Zbl 07302071) Full Text: DOI
Demina, Maria V. Liouvillian integrability of the generalized Duffing oscillators. (English) Zbl 07301487 Anal. Math. Phys. 11, No. 1, Paper No. 25, 18 p. (2021). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 34A34 34C05 PDF BibTeX XML Cite \textit{M. V. Demina}, Anal. Math. Phys. 11, No. 1, Paper No. 25, 18 p. (2021; Zbl 07301487) Full Text: DOI
Algaba, Antonio; García, Cristóbal; Reyes, Manuel Analytical integrability of perturbations of quadratic systems. (English) Zbl 07301267 Mediterr. J. Math. 18, No. 1, Paper No. 8, 17 p. (2021). MSC: 34A05 34C20 34C14 PDF BibTeX XML Cite \textit{A. Algaba} et al., Mediterr. J. Math. 18, No. 1, Paper No. 8, 17 p. (2021; Zbl 07301267) Full Text: DOI
Sakhnovich, Alexander On the classes of explicit solutions of Dirac, dynamical Dirac and Dirac-Weyl systems with non-vanishing at infinity potentials, their properties and applications. (English) Zbl 07291338 J. Differ. Equations 275, 250-269 (2021). MSC: 34A05 34B20 35Q41 37C80 81Q05 PDF BibTeX XML Cite \textit{A. Sakhnovich}, J. Differ. Equations 275, 250--269 (2021; Zbl 07291338) Full Text: DOI
Kudryashov, Nikolay A. The generalized Duffing oscillator. (English) Zbl 07274921 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105526, 16 p. (2021). MSC: 34C15 34C25 34A05 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105526, 16 p. (2021; Zbl 07274921) Full Text: DOI
Yang, Zhen-Hang; Tian, Jing-Feng; Zhu, Ya-Ru A sharp lower bound for the complete elliptic integrals of the first kind. (English) Zbl 1455.33014 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021). Reviewer: István Mező (Nanjing) MSC: 33E05 26E60 40A99 41A21 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021; Zbl 1455.33014) Full Text: DOI
Mao, Weihong Bifurcations and exact travelling wave solutions of M-N-Wang equation. (English) Zbl 07331921 J. Appl. Anal. Comput. 10, No. 1, 210-222 (2020). MSC: 34C23 34C37 34A05 PDF BibTeX XML Cite \textit{W. Mao}, J. Appl. Anal. Comput. 10, No. 1, 210--222 (2020; Zbl 07331921) Full Text: DOI
Chelnokov, Yu. N. Regular quaternion models of perturbed orbital motion of a rigid body in the Earth’s gravitational field. (English. Russian original) Zbl 07319691 Mech. Solids 55, No. 7, 958-976 (2020); translation from Prikl. Mat. Mekh. 83, No. 4, 562-585 (2019). MSC: 70 PDF BibTeX XML Cite \textit{Yu. N. Chelnokov}, Mech. Solids 55, No. 7, 958--976 (2020; Zbl 07319691); translation from Prikl. Mat. Mekh. 83, No. 4, 562--585 (2019) Full Text: DOI
Guha, P.; Garai, S.; Choudhury, A. G. Lax pairs and first integrals for autonomous and non-autonomous differential equations belonging to the Painlevé-Gambier list. (English) Zbl 07319348 Nelineĭn. Din. 16, No. 4, 637-650 (2020). MSC: 34A05 34A34 37C60 PDF BibTeX XML Cite \textit{P. Guha} et al., Nelineĭn. Din. 16, No. 4, 637--650 (2020; Zbl 07319348) Full Text: DOI MNR
Eremenko, A. E. Entire functions, PT-symmetry and Voros’s quantization scheme. (English) Zbl 1454.34003 Mat. Stud. 54, No. 2, 203-210 (2020). MSC: 34A05 34M60 81Q05 PDF BibTeX XML Cite \textit{A. E. Eremenko}, Mat. Stud. 54, No. 2, 203--210 (2020; Zbl 1454.34003) Full Text: DOI
Abundo, Mario An inverse problem for the first-passage place of some diffusion processes with random starting point. (English) Zbl 07316805 Stochastic Anal. Appl. 38, No. 6, 1122-1133 (2020). MSC: 60J60 60H05 60H10 PDF BibTeX XML Cite \textit{M. Abundo}, Stochastic Anal. Appl. 38, No. 6, 1122--1133 (2020; Zbl 07316805) Full Text: DOI
Demina, Maria V.; Valls, Claudia On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. (English) Zbl 07316379 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3231-3251 (2020). Reviewer: Joan Torregrosa (Barcelona) MSC: 34C05 34C07 34C08 34C45 34A05 34A34 PDF BibTeX XML Cite \textit{M. V. Demina} and \textit{C. Valls}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3231--3251 (2020; Zbl 07316379) Full Text: DOI
Halder, Amlan K.; Leach, P. G. L.; Paliathanasis, A.; Sinuvasan, R. Cheng equation: a revisit through symmetry analysis. (English) Zbl 07311167 Quaest. Math. 43, No. 7, 857-867 (2020). MSC: 35B06 34A05 34A34 34C14 22E60 35C05 35C07 PDF BibTeX XML Cite \textit{A. K. Halder} et al., Quaest. Math. 43, No. 7, 857--867 (2020; Zbl 07311167) Full Text: DOI
Savchuk, Artëm M.; Shkalikov, Andreĭ A. Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients. (English. Russian original) Zbl 07308582 Sb. Math. 211, No. 11, 1623-1659 (2020); translation from Mat. Sb. 211, No. 11, 129-166 (2020). MSC: 34A05 34E05 34B09 PDF BibTeX XML Cite \textit{A. M. Savchuk} and \textit{A. A. Shkalikov}, Sb. Math. 211, No. 11, 1623--1659 (2020; Zbl 07308582); translation from Mat. Sb. 211, No. 11, 129--166 (2020) Full Text: DOI
Valls, Claudia Algebraic traveling waves for the modified Korteweg-de Vries-Burgers equation. (English) Zbl 07307861 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 48, 16 p. (2020). MSC: 34A05 34C05 37C10 PDF BibTeX XML Cite \textit{C. Valls}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 48, 16 p. (2020; Zbl 07307861) Full Text: DOI
Yahiaoui, Mouna; Boukoucha, Rachid Invariant algebraic curves and the first integral for a class of Kolmogorov systems. (English) Zbl 07303747 Nonlinear Stud. 27, No. 1, 205-211 (2020). MSC: 34A05 34C45 PDF BibTeX XML Cite \textit{M. Yahiaoui} and \textit{R. Boukoucha}, Nonlinear Stud. 27, No. 1, 205--211 (2020; Zbl 07303747) Full Text: Link
Popovych, Roman O.; Bihlo, Alexander Inverse problem on conservation laws. (English) Zbl 1453.35192 Physica D 401, Article ID 132175, 16 p. (2020). MSC: 35R30 34A55 PDF BibTeX XML Cite \textit{R. O. Popovych} and \textit{A. Bihlo}, Physica D 401, Article ID 132175, 16 p. (2020; Zbl 1453.35192) Full Text: DOI
Gaeta, Giuseppe; Walcher, Sebastian Higher order normal modes. (English) Zbl 07300133 J. Geom. Mech. 12, No. 3, 421-434 (2020). Reviewer: Mohammad Khorrami (Tehran) MSC: 37J06 34A05 15A69 70K42 PDF BibTeX XML Cite \textit{G. Gaeta} and \textit{S. Walcher}, J. Geom. Mech. 12, No. 3, 421--434 (2020; Zbl 07300133) Full Text: DOI
Llibre, Jaume; Valls, Claudia On the singularities of the planar cubic polynomial differential systems and the Euler Jacobi formula. (English) Zbl 07299279 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 96, 33 p. (2020). Reviewer: Alexey O. Remizov (Moskva) MSC: 34C05 34A05 37C10 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{C. Valls}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 96, 33 p. (2020; Zbl 07299279) Full Text: DOI
Grosshans, Frank; Kraft, Hanspeter Covariants, derivation-invariant subsets, and first integrals. (English) Zbl 07293364 Épijournal de Géom. Algébr., EPIGA 4, Article 13, 27 p. (2020). MSC: 14L30 22E47 13A50 34C14 PDF BibTeX XML Cite \textit{F. Grosshans} and \textit{H. Kraft}, Épijournal de Géom. Algébr., EPIGA 4, Article 13, 27 p. (2020; Zbl 07293364) Full Text: arXiv
Polat, Gülden Gün; Özer, Teoman On group analysis of optimal control problems in economic growth models. (English) Zbl 07292868 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2853-2876 (2020). MSC: 70G65 65K10 34A05 PDF BibTeX XML Cite \textit{G. G. Polat} and \textit{T. Özer}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2853--2876 (2020; Zbl 07292868) Full Text: DOI
Hernandez, A.; Poznyak, A. S. Nonlinear parametric estimation of Hamiltonian systems: identification as stabilization. (English. Russian original) Zbl 1454.93053 Autom. Remote Control 81, No. 9, 1611-1626 (2020); translation from Avtom. Telemekh. 2020, No. 9, 62-80 (2020). MSC: 93B30 93D05 93C20 PDF BibTeX XML Cite \textit{A. Hernandez} and \textit{A. S. Poznyak}, Autom. Remote Control 81, No. 9, 1611--1626 (2020; Zbl 1454.93053); translation from Avtom. Telemekh. 2020, No. 9, 62--80 (2020) Full Text: DOI
Calogero, F.; Conte, R.; Leyvraz, F. New algebraically solvable systems of two autonomous first-order ordinary differential equations with purely quadratic right-hand sides. (English) Zbl 07287283 J. Math. Phys. 61, No. 10, 102704, 16 p. (2020). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 34A05 PDF BibTeX XML Cite \textit{F. Calogero} et al., J. Math. Phys. 61, No. 10, 102704, 16 p. (2020; Zbl 07287283) Full Text: DOI
Akrami, Seyed Ebrahim; Farzi, Shervin Covariantization of quantized calculi over quantum groups. (English) Zbl 07286022 Math. Bohem. 145, No. 4, 415-433 (2020). MSC: 58B32 81Q30 PDF BibTeX XML Cite \textit{S. E. Akrami} and \textit{S. Farzi}, Math. Bohem. 145, No. 4, 415--433 (2020; Zbl 07286022) Full Text: DOI
Wang, Fei; Qi, Feng Monotonicity and sharp inequalities related to complete \((p,q)\)-elliptic integrals of the first kind. (English) Zbl 1455.33012 C. R., Math., Acad. Sci. Paris 358, No. 8, 961-970 (2020). Reviewer: Klaus Schiefermayr (Wels) MSC: 33E05 33C75 PDF BibTeX XML Cite \textit{F. Wang} and \textit{F. Qi}, C. R., Math., Acad. Sci. Paris 358, No. 8, 961--970 (2020; Zbl 1455.33012) Full Text: DOI
Gorbachev, V. I. Average of ordinary differential equations of the second order with variable factors. (English) Zbl 07282967 Lobachevskii J. Math. 41, No. 10, 1999-2009 (2020). MSC: 34A30 34A05 34A25 34C29 PDF BibTeX XML Cite \textit{V. I. Gorbachev}, Lobachevskii J. Math. 41, No. 10, 1999--2009 (2020; Zbl 07282967) Full Text: DOI
Anco, Stephen C.; Gandarias, M. L. Symmetry multi-reduction method for partial differential equations with conservation laws. (English) Zbl 1453.35009 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105349, 16 p. (2020). MSC: 35B06 35C07 PDF BibTeX XML Cite \textit{S. C. Anco} and \textit{M. L. Gandarias}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105349, 16 p. (2020; Zbl 1453.35009) Full Text: DOI
Karayer, H.; Demirhan, D.; Atman, K. G. Analytical exact solutions for the Razavy type potential. (English) Zbl 07279043 Math. Methods Appl. Sci. 43, No. 15, 9185-9194 (2020). MSC: 34A05 34L10 33C15 81V19 34L15 PDF BibTeX XML Cite \textit{H. Karayer} et al., Math. Methods Appl. Sci. 43, No. 15, 9185--9194 (2020; Zbl 07279043) Full Text: DOI
Hamizi, Saad Eddine; Boukoucha, Rachid A class of planar differential systems with explicit expression for two limit cycles. (English) Zbl 07277561 Sib. Èlektron. Mat. Izv. 17, 1588-1597 (2020). MSC: 34C05 34C45 34A05 PDF BibTeX XML Cite \textit{S. E. Hamizi} and \textit{R. Boukoucha}, Sib. Èlektron. Mat. Izv. 17, 1588--1597 (2020; Zbl 07277561) Full Text: DOI
Telksnys, Tadas; Navickas, Zenonas; Sanjuán, Miguel A. F.; Marcinkevicius, Romas; Ragulskis, Minvydas Kink solitary solutions to a hepatitis C evolution model. (English) Zbl 07272967 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4427-4447 (2020). MSC: 34C60 92C60 34A05 34A25 PDF BibTeX XML Cite \textit{T. Telksnys} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4427--4447 (2020; Zbl 07272967) Full Text: DOI
Haq, Burhan ul; Naeem, Imran Closed-form solutions of two-sector Romer model of endogenous growth using partial Hamiltonian approach. (English) Zbl 1452.49011 Math. Methods Appl. Sci. 43, No. 9, 5681-5691 (2020). MSC: 49K15 91B62 PDF BibTeX XML Cite \textit{B. u. Haq} and \textit{I. Naeem}, Math. Methods Appl. Sci. 43, No. 9, 5681--5691 (2020; Zbl 1452.49011) Full Text: DOI
Joshi, Santosh B.; Ritelli, Daniele Hypergeometric identities related to Roberts reductions of hyperelliptic integrals. (English) Zbl 1453.33010 Result. Math. 75, No. 4, Paper No. 169, 25 p. (2020). Reviewer: Thomas Ernst (Uppsala) MSC: 33C65 33C05 33E05 PDF BibTeX XML Cite \textit{S. B. Joshi} and \textit{D. Ritelli}, Result. Math. 75, No. 4, Paper No. 169, 25 p. (2020; Zbl 1453.33010) Full Text: DOI
Jafarov, E. I.; Nagiyev, S. M.; Jafarova, A. M. Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator. (English) Zbl 1451.81229 Rep. Math. Phys. 86, No. 1, 25-37 (2020). MSC: 81Q05 34L40 33C45 34A05 PDF BibTeX XML Cite \textit{E. I. Jafarov} et al., Rep. Math. Phys. 86, No. 1, 25--37 (2020; Zbl 1451.81229) Full Text: DOI
Nazarov, A. I. On a family of ordinary differential equations integrable in elementary functions. (English) Zbl 07270865 Math. Notes 108, No. 4, 623-625 (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A05 PDF BibTeX XML Cite \textit{A. I. Nazarov}, Math. Notes 108, No. 4, 623--625 (2020; Zbl 07270865) Full Text: DOI
Gudimenko, A. I. Heat flow in a harmonic chain due to an impulse disturbance. (Russian. English summary) Zbl 1455.34017 Dal’nevost. Mat. Zh. 20, No. 1, 52-57 (2020). MSC: 34A33 34A30 34A12 34B05 34A05 80A19 34A37 PDF BibTeX XML Cite \textit{A. I. Gudimenko}, Dal'nevost. Mat. Zh. 20, No. 1, 52--57 (2020; Zbl 1455.34017) Full Text: MNR
Glushak, A. V. A family of singular differential equations. (English) Zbl 1455.34062 Lobachevskii J. Math. 41, No. 5, 763-771 (2020). MSC: 34G10 34A12 34A05 PDF BibTeX XML Cite \textit{A. V. Glushak}, Lobachevskii J. Math. 41, No. 5, 763--771 (2020; Zbl 1455.34062) Full Text: DOI
Cao, Yanhua; Li, Nan; Zhang, Zitong; Chen, Qingxiang; Luo, Wenjun; Zheng, Hui The method of polynomial particular solutions for solving ordinary differential equations. (English) Zbl 07267257 Math. Appl. 33, No. 2, 295-307 (2020). MSC: 34A05 PDF BibTeX XML Cite \textit{Y. Cao} et al., Math. Appl. 33, No. 2, 295--307 (2020; Zbl 07267257)
Alquran, Marwan; Jaradat, Imad; Sivasundaram, Seenith; Al Shraiedeh, Laila New shock-wave and periodic-wave solutions for some physical and engineering models: Vakhnenko-Parkes, GEWB, GRLW and some integrable equations. (English) Zbl 07264947 Nonlinear Stud. 27, No. 2, 393-403 (2020). MSC: 34A05 35C07 PDF BibTeX XML Cite \textit{M. Alquran} et al., Nonlinear Stud. 27, No. 2, 393--403 (2020; Zbl 07264947) Full Text: Link
Abramov, S. A.; Ryabenko, A. A.; Khmelnov, D. E. Regular solutions of linear ordinary differential equations and truncated series. (English. Russian original) Zbl 1454.34026 Comput. Math. Math. Phys. 60, No. 1, 1-14 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 4-17 (2020). MSC: 34A25 34A30 34A05 PDF BibTeX XML Cite \textit{S. A. Abramov} et al., Comput. Math. Math. Phys. 60, No. 1, 1--14 (2020; Zbl 1454.34026); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 4--17 (2020) Full Text: DOI
Pikulin, S. V. Parametrization of solutions to the Emden-Fowler equation and the Thomas-Fermi model of compressed atoms. (English. Russian original) Zbl 1455.34018 Comput. Math. Math. Phys. 60, No. 8, 1271-1283 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1315-1328 (2020). MSC: 34A34 34A12 34B40 34B16 34B08 34A05 34A45 65L10 PDF BibTeX XML Cite \textit{S. V. Pikulin}, Comput. Math. Math. Phys. 60, No. 8, 1271--1283 (2020; Zbl 1455.34018); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1315--1328 (2020) Full Text: DOI
McGrath, Peter Bases for second order linear ODEs. (English) Zbl 1454.34004 Am. Math. Mon. 127, No. 9, 849 (2020). MSC: 34A05 34A30 34A12 PDF BibTeX XML Cite \textit{P. McGrath}, Am. Math. Mon. 127, No. 9, 849 (2020; Zbl 1454.34004) Full Text: DOI
Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei Integrability analysis of the Shimizu-Morioka system. (English) Zbl 07261575 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105101, 12 p. (2020). MSC: 34A05 34A34 34C14 PDF BibTeX XML Cite \textit{K. Huang} et al., Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105101, 12 p. (2020; Zbl 07261575) Full Text: DOI
Llibre, Jaume; Valls, Claudia On the configurations of the singular points and their topological indices for the spatial quadratic polynomial differential systems. (English) Zbl 1454.34055 J. Differ. Equations 269, No. 12, 10571-10586 (2020). Reviewer: Alexey O. Remizov (Moskva) MSC: 34C05 34A05 37C25 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{C. Valls}, J. Differ. Equations 269, No. 12, 10571--10586 (2020; Zbl 1454.34055) Full Text: DOI
Marynets, Kateryna A Sturm-Liouville problem arising in the atmospheric boundary-layer dynamics. (English) Zbl 1453.34028 J. Math. Fluid Mech. 22, No. 3, Paper No. 41, 6 p. (2020). Reviewer: Abdullah Özbekler (Ankara) MSC: 34B05 34A05 76U05 34C20 PDF BibTeX XML Cite \textit{K. Marynets}, J. Math. Fluid Mech. 22, No. 3, Paper No. 41, 6 p. (2020; Zbl 1453.34028) Full Text: DOI
Lychagin, Valentin; Roop, Mikhail Schrödinger equations on elliptic curves: symmetries, solutions and eigenvalue problem. (English) Zbl 07259112 Anal. Math. Phys. 10, No. 3, Paper No. 34, 17 p. (2020). Reviewer: Erdogan Sen (Tekirdağ) MSC: 34C14 34A05 34B09 PDF BibTeX XML Cite \textit{V. Lychagin} and \textit{M. Roop}, Anal. Math. Phys. 10, No. 3, Paper No. 34, 17 p. (2020; Zbl 07259112) Full Text: DOI
Fečkan, Michal; Guan, Yi; O’Regan, Donal; Wang, JinRong Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows. (English) Zbl 1453.34027 Monatsh. Math. 193, No. 3, 623-636 (2020). MSC: 34B05 34A45 34E10 34A05 34B27 PDF BibTeX XML Cite \textit{M. Fečkan} et al., Monatsh. Math. 193, No. 3, 623--636 (2020; Zbl 1453.34027) Full Text: DOI
Sukhanov, V. V. Trace formulas for the one-dimensional Stark operator and integrals of motion for the cylindrical Korteweg-de Vries equation. (English. Russian original) Zbl 1453.34108 St. Petersbg. Math. J. 31, No. 5, 903-910 (2020); translation from Algebra Anal. 31, No. 5, 206-215 (2019). MSC: 34L05 34A55 34L40 34A05 PDF BibTeX XML Cite \textit{V. V. Sukhanov}, St. Petersbg. Math. J. 31, No. 5, 903--910 (2020; Zbl 1453.34108); translation from Algebra Anal. 31, No. 5, 206--215 (2019) Full Text: DOI
Llibre, Jaume; Tonon, Durval José; Queiroz Velter, Mariana Crossing periodic orbits via first integrals. (English) Zbl 1453.34043 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050163, 9 p. (2020). MSC: 34C05 34A36 34A05 34C37 PDF BibTeX XML Cite \textit{J. Llibre} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050163, 9 p. (2020; Zbl 1453.34043) Full Text: DOI
Karaman, Bahar Analytical investigation for modified Riemann-Liouville fractional Equal-Width equation types based on \((G'/G)-\) expansion technique. (English) Zbl 07254894 Miskolc Math. Notes 21, No. 1, 219-227 (2020). MSC: 34A08 26A33 34A05 PDF BibTeX XML Cite \textit{B. Karaman}, Miskolc Math. Notes 21, No. 1, 219--227 (2020; Zbl 07254894) Full Text: DOI
Berbache, A. Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces. (English) Zbl 1452.34001 Sib. Èlektron. Mat. Izv. 17, 1488-1515 (2020). MSC: 34-02 34C05 34A36 34C07 PDF BibTeX XML Cite \textit{A. Berbache}, Sib. Èlektron. Mat. Izv. 17, 1488--1515 (2020; Zbl 1452.34001) Full Text: DOI
Alzer, Horst; Richards, Kendall C. A concavity property of the complete elliptic integral of the first kind. (English) Zbl 1447.26013 Integral Transforms Spec. Funct. 31, No. 9, 758-768 (2020). Reviewer: Klaus Schiefermayr (Wels) MSC: 26D07 33C05 33E05 PDF BibTeX XML Cite \textit{H. Alzer} and \textit{K. C. Richards}, Integral Transforms Spec. Funct. 31, No. 9, 758--768 (2020; Zbl 1447.26013) Full Text: DOI
Conway, John T. A generalized integration formula for indefinite integrals of special functions. (English) Zbl 1452.34004 Integral Transforms Spec. Funct. 31, No. 8, 586-600 (2020). MSC: 34A05 33C10 33C15 33E30 PDF BibTeX XML Cite \textit{J. T. Conway}, Integral Transforms Spec. Funct. 31, No. 8, 586--600 (2020; Zbl 1452.34004) Full Text: DOI
Akgül, Ali; Aliyu, Aliyu Isa; Inc, Mustafa; Yusuf, Abdullahi; Baleanu, Dumitru Approximate solutions to the conformable Rosenau-Hyman equation using the two-step Adomian decomposition method with Padé approximation. (English) Zbl 1452.34008 Math. Methods Appl. Sci. 43, No. 13, 7632-7639 (2020). MSC: 34A08 34A45 34A05 PDF BibTeX XML Cite \textit{A. Akgül} et al., Math. Methods Appl. Sci. 43, No. 13, 7632--7639 (2020; Zbl 1452.34008) Full Text: DOI
Cariñena, J. F.; Güngör, F.; Torres, P. J. Invariance of second order ordinary differential equations under two-dimensional affine subalgebras of Ermakov-Pinney Lie algebra. (English) Zbl 07247126 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 111947, 17 p. (2020). MSC: 34C14 34C20 34A05 PDF BibTeX XML Cite \textit{J. F. Cariñena} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 111947, 17 p. (2020; Zbl 07247126) Full Text: DOI
Giné, Jaume; Valls, Claudia Integrability conditions of a weak saddle in generalized Liénard-like complex polynomial differential systems. (English) Zbl 1441.34002 J. Nonlinear Math. Phys. 27, No. 4, 664-678 (2020). MSC: 34A05 34C05 34C10 PDF BibTeX XML Cite \textit{J. Giné} and \textit{C. Valls}, J. Nonlinear Math. Phys. 27, No. 4, 664--678 (2020; Zbl 1441.34002) Full Text: DOI
Braghtha, Aymen Darboux integrable system with a triple point and pseudo-abelian integrals. (English) Zbl 1451.34035 J. Dyn. Control Syst. 26, No. 4, 761-774 (2020). MSC: 34C08 34C07 34A05 34E10 PDF BibTeX XML Cite \textit{A. Braghtha}, J. Dyn. Control Syst. 26, No. 4, 761--774 (2020; Zbl 1451.34035) Full Text: DOI
Tsiganov, A. V. On a time-dependent nonholonomic oscillator. (English) Zbl 1448.37076 Russ. J. Math. Phys. 27, No. 3, 399-409 (2020). MSC: 37J60 34C15 PDF BibTeX XML Cite \textit{A. V. Tsiganov}, Russ. J. Math. Phys. 27, No. 3, 399--409 (2020; Zbl 1448.37076) Full Text: DOI
Qi, Feng; Niu, Da-Wei; Lim, Dongkyu; Guo, Bai-Ni Some properties and an application of multivariate exponential polynomials. (English) Zbl 07245387 Math. Methods Appl. Sci. 43, No. 6, 2967-2983 (2020). MSC: 11B83 11A25 11B73 11C08 11C20 15A15 26A24 26A48 26C05 26D05 33B10 34A05 60H05 60H40 PDF BibTeX XML Cite \textit{F. Qi} et al., Math. Methods Appl. Sci. 43, No. 6, 2967--2983 (2020; Zbl 07245387) Full Text: DOI
Akinyemi, Lanre; Iyiola, Olaniyi S. Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. (English) Zbl 1454.34011 Math. Methods Appl. Sci. 43, No. 12, 7442-7464 (2020). MSC: 34A08 34A34 34A45 34A05 34C20 PDF BibTeX XML Cite \textit{L. Akinyemi} and \textit{O. S. Iyiola}, Math. Methods Appl. Sci. 43, No. 12, 7442--7464 (2020; Zbl 1454.34011) Full Text: DOI
Wang, Yuanshi; Wu, Hong Global dynamics of Lotka-Volterra equations characterizing multiple predators competing for one prey. (English) Zbl 1451.34070 J. Math. Anal. Appl. 491, No. 1, Article ID 124293, 13 p. (2020). MSC: 34C60 92D25 34A05 34C05 34D20 34D05 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{H. Wu}, J. Math. Anal. Appl. 491, No. 1, Article ID 124293, 13 p. (2020; Zbl 1451.34070) Full Text: DOI
Fomin, V. I. On the case of complex roots of the characteristic operator polynomial of a linear \(n\) th-order homogeneous differential equation in a Banach space. (English. Russian original) Zbl 1451.34081 Differ. Equ. 56, No. 8, 1021-1030 (2020); translation from Differ. Uravn. 56, No. 8, 1045-1054 (2020). MSC: 34G10 34A05 PDF BibTeX XML Cite \textit{V. I. Fomin}, Differ. Equ. 56, No. 8, 1021--1030 (2020; Zbl 1451.34081); translation from Differ. Uravn. 56, No. 8, 1045--1054 (2020) Full Text: DOI
Chèze, Guillaume; Combot, Thierry Symbolic computations of first integrals for polynomial vector fields. (English) Zbl 07244214 Found. Comput. Math. 20, No. 4, 681-752 (2020). MSC: 34A05 68W30 68W40 PDF BibTeX XML Cite \textit{G. Chèze} and \textit{T. Combot}, Found. Comput. Math. 20, No. 4, 681--752 (2020; Zbl 07244214) Full Text: DOI
Khajoei, Najmeh; Molaei, Mohammadreza On polynomial differential systems of degree 3 in \(\mathbb{R}^2\) and \(\mathbb{R}^3\). (English) Zbl 07243706 Differ. Geom. Dyn. Syst. 22, 141-154 (2020). MSC: 34C20 34A05 34C45 34C14 PDF BibTeX XML Cite \textit{N. Khajoei} and \textit{M. Molaei}, Differ. Geom. Dyn. Syst. 22, 141--154 (2020; Zbl 07243706) Full Text: Link
Bai, Yuzhen; Xia, Yonghui; Zhu, Wenjing Bifurcations and exact traveling wave solutions of Gerdjikov-Ivanov equation with perturbation terms. (English) Zbl 07243145 Adv. Differ. Equ. 25, No. 5-6, 279-314 (2020). Reviewer: Yingxin Guo (Qufu) MSC: 34C23 34A05 35C07 34C05 34C37 PDF BibTeX XML Cite \textit{Y. Bai} et al., Adv. Differ. Equ. 25, No. 5--6, 279--314 (2020; Zbl 07243145) Full Text: Euclid
Ruiz, Adrian; Muriel, Concepcion; Ramírez, J. Parametric solutions to a static fourth-order Euler-Bernoulli beam equation in terms of Lamé functions. (English) Zbl 1453.34001 Ortegon Gallego, Francisco (ed.) et al., Recent advances in pure and applied mathematics. Based on contributions presented at the Second Joint Meeting Spain-Brazil in Mathematics, Cádiz, Spain, December 11–14, 2018. Cham: Springer. RSME Springer Ser. 4, 93-103 (2020). MSC: 34A05 34A34 33E10 74K10 PDF BibTeX XML Cite \textit{A. Ruiz} et al., RSME Springer Ser. 4, 93--103 (2020; Zbl 1453.34001) Full Text: DOI
El-Ajou, Ahmad; Oqielat, Moa’ath N.; Al-Zhour, Zeyad; Momani, Shaher A class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique. (English) Zbl 1451.34007 Fract. Calc. Appl. Anal. 23, No. 2, 356-377 (2020). MSC: 34A08 26A33 34A05 34A25 34A30 PDF BibTeX XML Cite \textit{A. El-Ajou} et al., Fract. Calc. Appl. Anal. 23, No. 2, 356--377 (2020; Zbl 1451.34007) Full Text: DOI
Kudryashov, Nikolay A. Rational solutions of equations associated with the second Painlevé equation. (English) Zbl 1451.34004 Regul. Chaotic Dyn. 25, No. 3, 273-280 (2020). Reviewer: Yousuke Ohyama (Tokushima) MSC: 34A05 34M55 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Regul. Chaotic Dyn. 25, No. 3, 273--280 (2020; Zbl 1451.34004) Full Text: DOI
Curry, Charles; Ebrahimi-Fard, Kurusch; Owren, Brynjulf The Magnus expansion and post-Lie algebras. (English) Zbl 1450.34015 Math. Comput. 89, No. 326, 2785-2799 (2020). MSC: 34A30 37C60 34A12 34A05 34A25 34A26 34C14 65L05 PDF BibTeX XML Cite \textit{C. Curry} et al., Math. Comput. 89, No. 326, 2785--2799 (2020; Zbl 1450.34015) Full Text: DOI
Messias, Marcelo; Silva, Rafael Paulino Determination of nonchaotic behavior for some classes of polynomial jerk equations. (English) Zbl 1452.34023 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050117, 12 p. (2020). Reviewer: Eduard Musafirov (Grodno) MSC: 34A34 34A05 34C28 34C45 PDF BibTeX XML Cite \textit{M. Messias} and \textit{R. P. Silva}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050117, 12 p. (2020; Zbl 1452.34023) Full Text: DOI
Agarwal, Ravi P.; Hristova, Snezhana; O’Regan, Donal Exact solutions of linear Riemann-Liouville fractional differential equations with impulses. (English) Zbl 1448.34008 Rocky Mt. J. Math. 50, No. 3, 779-791 (2020). MSC: 34A08 34A05 34A37 34A30 34A12 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Rocky Mt. J. Math. 50, No. 3, 779--791 (2020; Zbl 1448.34008) Full Text: DOI Euclid
Liu, Yuji General solutions of a higher order impulsive fractional differential equation involving the Riemann-Liouville fractional derivatives. (English) Zbl 1449.34025 J. Math. Res. Appl. 40, No. 2, 140-164 (2020). MSC: 34A08 34A05 34A37 PDF BibTeX XML Cite \textit{Y. Liu}, J. Math. Res. Appl. 40, No. 2, 140--164 (2020; Zbl 1449.34025) Full Text: DOI
Barreira, Luis; Llibre, Jaume; Valls, Claudia Integrability and zero-Hopf bifurcation in the Sprott A system. (English) Zbl 1450.34018 Bull. Sci. Math. 162, Article ID 102874, 15 p. (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A34 34A05 34C23 34C05 34C29 PDF BibTeX XML Cite \textit{L. Barreira} et al., Bull. Sci. Math. 162, Article ID 102874, 15 p. (2020; Zbl 1450.34018) Full Text: DOI
Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei First integrals of the Maxwell-Bloch system. (English. French summary) Zbl 1452.34022 C. R., Math., Acad. Sci. Paris 358, No. 1, 3-11 (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A34 34A05 78A60 PDF BibTeX XML Cite \textit{K. Huang} et al., C. R., Math., Acad. Sci. Paris 358, No. 1, 3--11 (2020; Zbl 1452.34022) Full Text: DOI
Chandrasekar, V. K.; Tiwari, A. K.; Pandey, S. N.; Senthilvelan, M.; Lakshmanan, M. Response to “Comment on ‘Classification of Lie point symmetries for quadratic Liénard type equation \(\ddot x + f(x)\dot x^2 + g(x) = 0\)”’. (English) Zbl 1447.34038 J. Math. Phys. 61, No. 4, 044102, 3 p. (2020). MSC: 34C14 34A34 34C20 34A05 PDF BibTeX XML Cite \textit{V. K. Chandrasekar} et al., J. Math. Phys. 61, No. 4, 044102, 3 p. (2020; Zbl 1447.34038) Full Text: DOI
Iacono, Roberto Comment on “Classification of Lie point symmetries for quadratic Liénard type equation \(\ddot x + f(x) \dot x^2 + g(x) = 0\)”. (English) Zbl 1447.34039 J. Math. Phys. 61, No. 4, 044101, 3 p. (2020). MSC: 34C14 34A34 34C20 34A05 PDF BibTeX XML Cite \textit{R. Iacono}, J. Math. Phys. 61, No. 4, 044101, 3 p. (2020; Zbl 1447.34039) Full Text: DOI
Hoepfner, G.; Medrado, R. Microlocal regularity for Mizohata type differential operators. (English) Zbl 1442.35012 J. Inst. Math. Jussieu 19, No. 4, 1185-1209 (2020). MSC: 35A27 35F05 35A18 35A20 35B65 32A55 PDF BibTeX XML Cite \textit{G. Hoepfner} and \textit{R. Medrado}, J. Inst. Math. Jussieu 19, No. 4, 1185--1209 (2020; Zbl 1442.35012) Full Text: DOI
Amel’kin, V. V.; Tyshchenko, V. Yu. Extendability of solutions to autonomous polynomial differential systems. (English. Russian original) Zbl 1447.34006 Russ. Math. 64, No. 2, 8-18 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 2, 10-21 (2020). MSC: 34A05 34C11 58A17 PDF BibTeX XML Cite \textit{V. V. Amel'kin} and \textit{V. Yu. Tyshchenko}, Russ. Math. 64, No. 2, 8--18 (2020; Zbl 1447.34006); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 2, 10--21 (2020) Full Text: DOI
Guha, Partha Generalized Emden-Fowler equations in noncentral curl forces and first integrals. (English) Zbl 1435.34005 Acta Mech. 231, No. 2, 815-825 (2020). MSC: 34A05 34C20 PDF BibTeX XML Cite \textit{P. Guha}, Acta Mech. 231, No. 2, 815--825 (2020; Zbl 1435.34005) Full Text: DOI
Mouafo Wouodjié, Merlin; Koepf, Wolfram On the solutions of holonomic third-order linear irreducible differential equations in terms of hypergeometric functions. (English) Zbl 1454.34005 J. Symb. Comput. 101, 202-241 (2020). MSC: 34A05 34A30 33C45 PDF BibTeX XML Cite \textit{M. Mouafo Wouodjié} and \textit{W. Koepf}, J. Symb. Comput. 101, 202--241 (2020; Zbl 1454.34005) Full Text: DOI
Kahraman, Tanju Differential equations of null quaternionic curves. (English) Zbl 1442.53009 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 63, 9 p. (2020). MSC: 53A35 53B30 34A05 PDF BibTeX XML Cite \textit{T. Kahraman}, Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 63, 9 p. (2020; Zbl 1442.53009) Full Text: DOI
Ngô, Lâm Xuân Châu; Trong Thi, Ha Möbius transformations on algebraic ODEs of order one and algebraic general solutions of the autonomous equivalence classes. (English) Zbl 1451.34045 J. Comput. Appl. Math. 380, Article ID 112999, 8 p. (2020). Reviewer: Guy Katriel (Haifa) MSC: 34C20 34A09 34C41 34A05 PDF BibTeX XML Cite \textit{L. X. C. Ngô} and \textit{H. Trong Thi}, J. Comput. Appl. Math. 380, Article ID 112999, 8 p. (2020; Zbl 1451.34045) Full Text: DOI
Sinuvasan, R.; Tamizhmani, K. M.; Leach, P. G. L. Algebraic and singularity properties of a class of generalisations of the Kummer-Schwarz equation. (English) Zbl 1446.34002 Differ. Equ. Dyn. Syst. 28, No. 2, 315-324 (2020). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 34A05 34A34 34C14 22E60 PDF BibTeX XML Cite \textit{R. Sinuvasan} et al., Differ. Equ. Dyn. Syst. 28, No. 2, 315--324 (2020; Zbl 1446.34002) Full Text: DOI
Valls, Claudia Integrable weak saddles for trigonometric Liénard systems. (English) Zbl 1446.34003 J. Dyn. Control Syst. 26, No. 3, 551-556 (2020). MSC: 34A05 34C05 PDF BibTeX XML Cite \textit{C. Valls}, J. Dyn. Control Syst. 26, No. 3, 551--556 (2020; Zbl 1446.34003) Full Text: DOI
Efendiev, B. I. Cauchy problem for an ordinary differential equation with a distributed-order differentiation operator. (English. Russian original) Zbl 1445.34011 Differ. Equ. 56, No. 5, 658-670 (2020); translation from Differ. Uravn. 56, No. 5, 668-680 (2020). MSC: 34A08 34A05 34A12 PDF BibTeX XML Cite \textit{B. I. Efendiev}, Differ. Equ. 56, No. 5, 658--670 (2020; Zbl 1445.34011); translation from Differ. Uravn. 56, No. 5, 668--680 (2020) Full Text: DOI
Chen, Hebai; Tang, Yilei Global dynamics of the Josephson equation in \(TS^1\). (English) Zbl 1447.37056 J. Differ. Equations 269, No. 6, 4884-4913 (2020). Reviewer: Changjin Xu (Guiyang) MSC: 37J20 37J25 34A05 34A34 34C14 PDF BibTeX XML Cite \textit{H. Chen} and \textit{Y. Tang}, J. Differ. Equations 269, No. 6, 4884--4913 (2020; Zbl 1447.37056) Full Text: DOI
Kozlov, Valeriĭ V. First integrals and asymptotic trajectories. (English. Russian original) Zbl 1444.34053 Sb. Math. 211, No. 1, 29-54 (2020); translation from Mat. Sb. 211, No. 1, 32-59 (2020). MSC: 34C05 34A05 34C20 34D05 34D20 58K05 PDF BibTeX XML Cite \textit{V. V. Kozlov}, Sb. Math. 211, No. 1, 29--54 (2020; Zbl 1444.34053); translation from Mat. Sb. 211, No. 1, 32--59 (2020) Full Text: DOI
Wei, Lijun; Zhang, Xiang Limit cycles bifurcating from periodic orbits near a centre and a homoclinic loop with a nilpotent singularity of Hamiltonian systems. (English) Zbl 1444.34058 Nonlinearity 33, No. 6, 2723-2754 (2020). MSC: 34C07 34C05 34C08 34C23 34C37 34E10 37J40 PDF BibTeX XML Cite \textit{L. Wei} and \textit{X. Zhang}, Nonlinearity 33, No. 6, 2723--2754 (2020; Zbl 1444.34058) Full Text: DOI
Giné, Jaume A note on: “The generalized Liénard polynomial differential systems \(x' = y\), \(y' =-g(x) - f(x)y\), with \(\deg g =\deg f + 1\), are not Liouvillian integrable”. (English) Zbl 1448.34002 Bull. Sci. Math. 161, Article ID 102857, 2 p. (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A05 34C05 PDF BibTeX XML Cite \textit{J. Giné}, Bull. Sci. Math. 161, Article ID 102857, 2 p. (2020; Zbl 1448.34002) Full Text: DOI
Aptekarev, Alexander I.; Kozhan, Rostyslav Differential equations for the recurrence coefficients limits for multiple orthogonal polynomials from a Nevai class. (English) Zbl 1440.42115 J. Approx. Theory 255, Article ID 105409, 20 p. (2020). MSC: 42C05 33C45 34A05 PDF BibTeX XML Cite \textit{A. I. Aptekarev} and \textit{R. Kozhan}, J. Approx. Theory 255, Article ID 105409, 20 p. (2020; Zbl 1440.42115) Full Text: DOI