×

Rank 1 character varieties of finitely presented groups. (English) Zbl 1390.14187

This paper under review deals with rank 1 character varieties of finitely presented groups.
In this article, \(\Gamma\) is a finitely presentable discrete group and \(\chi(\Gamma ,G)\) is the \(G\) character variety of \(\Gamma\) where \(G\) is a rank 1 complex affine algebraic group.
An effective algorithm is presented in order to determine the structure of the variety \(\chi(\Gamma, G)\).
More precisely, the proposed algorithm takes a finite presentation for \(\Gamma\) and produces a finite presentation of the coordinate ring of \(\chi(\Gamma,G)\). The implementations in Mathematica, as well in Python and SageMath are given.
Known theorems of Vogt, Horowitz, Magnus, Gonzalez-Acuna and Montesinos-Amilibia, Brumfiel-Hilden and Drensky are used for the construction of the algorithm.
Assuming that \(G=\mathrm{SL}_2(\mathbb{C})\), it provides a new proof and a new description of the structure of \(\mathrm{SL}_2\) character varieties.
In the last section of this paper, concrete examples are provided and it is shown that using this algorithm, known results are verified.

MSC:

14Q20 Effectivity, complexity and computational aspects of algebraic geometry
14D20 Algebraic moduli problems, moduli of vector bundles
14L30 Group actions on varieties or schemes (quotients)
20C15 Ordinary representations and characters
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ashley, C., Burelle, J.-P., Lawton. S.: Rank 1 character varieties of finitely presented groups. ArXiv e-prints, (March 2017) https://arxiv.org/abs/1703.08241 · Zbl 1390.14187
[2] Atiyah, M.F., Bott, R.: The Yang-Mills equations over riemann surfaces. Philos. Trans. R. Soc. Lond Ser. A 308(1505), 523-615 (1983) · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[3] Aslaksen, H., Tan, E.-C., Zhu, C.-B.: Generators and relations of invariants of \[2 \times 22\]×2 matrices. Commun. Algebra 22(5), 1821-1832 (1994) · Zbl 0813.16015 · doi:10.1080/00927879408824938
[4] Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. Mem. Am. Math. Soc. 157(747), x+136 (2002) · Zbl 0993.22002
[5] Brumfiel, G.W., Hilden, H.M.: SL(2) Representations of Finitely Presented Groups. Contemporary Mathematics, vol. 187. American Mathematical Society, Providence (1995) · Zbl 0838.20006
[6] Baker, K.L., Petersen, K.L.: Character varieties of once-punctured torus bundles with tunnel number one. Int. J. Math. 24(6), 1350048 (2013) · Zbl 1275.57016 · doi:10.1142/S0129167X13500481
[7] Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties of \[33\]-manifolds. Invent. Math. 118(1), 47-84 (1994) · Zbl 0842.57013 · doi:10.1007/BF01231526
[8] Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of \[33\]-manifolds. Available at http://snappy.computop.org · Zbl 1231.57013
[9] Casimiro, A., Florentino, C., Lawton, S., Oliveira, A.: Topology of moduli spaces of free group representations in real reductive groups. Forum Math. 28(2), 275-294 (2016) · Zbl 1349.14187 · doi:10.1515/forum-2014-0049
[10] Culler, M., Shalen, P.B.: Varieties of group representations and splittings of \[33\]-manifolds. Ann. Math. (2) 117(1), 109-146 (1983) · Zbl 0529.57005 · doi:10.2307/2006973
[11] Drensky, V., Formanek, E.: Polynomial Identity Rings. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel (2004) · Zbl 1077.16025 · doi:10.1007/978-3-0348-7934-7
[12] Dolgachev, I.: Lectures on invariant theory volume 296 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003) · Zbl 1023.13006
[13] Drensky, V.: Defining relations for the algebra of invariants of \[2 \times 22\]×2 matrices. Algebr. Represent. Theory 6(2), 193-214 (2003) · Zbl 1026.16009 · doi:10.1023/A:1023266314025
[14] Florentino, C., Lawton, S.: Topology of character varieties of Abelian groups. Topol. Appl. 173, 32-58 (2014) · Zbl 1300.14045 · doi:10.1016/j.topol.2014.05.009
[15] Florentino, C.A.A.: Invariants of \[2 \times 22\]×2 matrices, irreducible \[(2,{\mathbb{C}})\](2,C) characters and the Magnus trace map. Geom. Dedicata 121, 167-186 (2006) · Zbl 1103.14025 · doi:10.1007/s10711-006-9097-5
[16] Florentino, C., Lawton, S., Ramras, D.: Homotopy groups of free group character varieties. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17, 143-185 (2017) · Zbl 1403.14011
[17] González-Acuña, F., Montesinos-Amilibia, J.M.: On the character variety of group representations in \[{\rm SL}(2,{ C})\] SL(2,C) and \[{\rm PSL}(2,{ C})\] PSL(2,C). Math. Z. 214(4), 627-652 (1993) · Zbl 0799.20040 · doi:10.1007/BF02572429
[18] Gongopadhyay, K., Lawton, S.: Invariants of pairs in \[{\rm SL}(4, \mathbb{C})\] SL(4,C) and \[{\rm SU}(3,1)\] SU(3,1). Proc. Amer. Math. Soc. 145(11), 4703-4715 (2017). doi:10.1090/proc/13638 · Zbl 1386.14060
[19] Gabai, D., Meyerhoff, R., Milley, P.: Mom technology and hyperbolic 3-manifolds. In: The Tradition of Ahlfors-Bers. V, volume 510 of Contemporary Mathematics, pp. 84-107. American Mathematical Society, Providence (2010) · Zbl 1241.57001
[20] Goldman, William M.: Geometric structures on manifolds and varieties of representations. In: Geometry of group representations (Boulder, CO, 1987), volume 74 of Contemporary Mathematics, pp. 169-198. American Mathematical Society, Providence (1988) · Zbl 1373.57014
[21] Goldman, WM.: Trace coordinates on Fricke spaces of some simple hyperbolic surfaces. In: Handbook of Teichmüller theory. Vol. II, volume 13 of IRMA Lectures in Matheatics and Theoretical Physics, pp. 611-684. European Mathematical Society, Zürich (2009) · Zbl 1175.30043
[22] Goldman, WM.: Locally homogeneous geometric manifolds. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 717-744. Hindustan Book Agency, New Delhi, (2010) · Zbl 1234.57001
[23] Goldman, W.M., Xia, E.Z.: Ergodicity of mapping class group actions on \[{\rm SU}(2)\] SU(2)-character varieties. In: Geometry, rigidity, and group actions, Chicago Lectures in Mathematics, pp. 591-608. Universty of Chicago Press, Chicago (2011) · Zbl 1283.22016
[24] Goldman, W.M., Xia, E.Z.: Action of the Johnson-Torelli group on representation varieties. Proc. Am. Math. Soc. 140(4), 1449-1457 (2012) · Zbl 1244.57007 · doi:10.1090/S0002-9939-2011-10972-9
[25] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) · Zbl 0367.14001
[26] Harada, S.: Hasse-Weil zeta functions of \[{\rm SL}_2\] SL2-character varieties of closed orientable hyperbolic \[33\]-manifolds. ArXiv e-prints, (December 2015) · Zbl 1203.57003
[27] Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[28] Hilden, H.M., Lozano, M.T., Montesinos-Amilibia, J.M.: On the character variety of periodic knots and links. Math. Proc. Camb. Philos. Soc. 129(3), 477-490 (2000) · Zbl 0974.57004 · doi:10.1017/S0305004100004679
[29] Heusener, M., Muñoz, V., Porti, J.: The \[SL(3,\mathbb{C})\] SL(3,C)-character variety of the figure eight knot. Ill. J. Math. 60(1), 55-98 (2016) · Zbl 1373.57014
[30] Horowitz, R.D.: Characters of free groups represented in the two-dimensional special linear group. Commun. Pure Appl. Math. 25, 635-649 (1972) · Zbl 1184.20009 · doi:10.1002/cpa.3160250602
[31] Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197-229 (2003) · Zbl 1043.14011 · doi:10.1007/s00222-003-0286-7
[32] Kapovich, M, Millson, JJ.: On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties. Inst. Hautes Études Sci. Publ. Math. (88):5-95 (1999), (1998) · Zbl 0982.20023
[33] Kapovich, M., Millson, J.J.: On representation varieties of 3-manifold groups. arXiv:1303.2347, (2013) · Zbl 1379.57003
[34] Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. In: The Many Faces of the Superworld, pp. 185-234. World Scientific Publishing, River Edge (2000) · Zbl 1035.81061
[35] Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1-236 (2007) · Zbl 1128.22013 · doi:10.4310/CNTP.2007.v1.n1.a1
[36] Landes, Emily: Identifying the canonical component for the Whitehead link. Math. Res. Lett. 18(4), 715-731 (2011) · Zbl 1271.57041 · doi:10.4310/MRL.2011.v18.n4.a10
[37] Lawton, S., Casimiro, A., Florentino, C., Oliveira, A.: On the homotopy type of free group character varieties. Bol. Soc. Port. Mat., (Special Issue):53-57, (2016) · Zbl 1349.14187
[38] Lawton, \[S.: {\rm SL}(3,\mathbb{C})\] SL(3,C)-Character Varieties and \[\mathbb{RP}^2\] RP2-Structures on a Trinion. Ph.D. Dissertation, University of Maryland, ProQuest, Ann Arbor (2006) · Zbl 0509.14014
[39] Lawton, S.: Generators, relations and symmetries in pairs of \[3\times 33\]×3 unimodular matrices. J. Algebra 313(2), 782-801 (2007) · Zbl 1119.13004 · doi:10.1016/j.jalgebra.2007.01.003
[40] Lawton, S.: Minimal affine coordinates for \[{\rm SL}(3,\mathbb{C})\] SL(3,C) character varieties of free groups. J. Algebra 320(10), 3773-3810 (2008) · Zbl 1157.14030 · doi:10.1016/j.jalgebra.2008.06.031
[41] Lawton, S.: Algebraic independence in \[{\rm SL}(3,\mathbb{C})\] SL(3,C) character varieties of free groups. J. Algebra 324(6), 1383-1391 (2010) · Zbl 1209.14036 · doi:10.1016/j.jalgebra.2010.06.023
[42] Le Bruyn, L.: Trace rings of generic \[22\] by \[22\] matrices. Mem. Am. Math. Soc. 66(363), vi+100 (1987) · Zbl 0675.16009
[43] Lubotzky, A., Magid, A.R.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc. 58(336), xi+117 (1985) · Zbl 0598.14042
[44] Lawton, S., Sikora, A.S.: Varieties of characters. Algebra Represent. Thoery (2017). doi:10.1007/s10468-017-9679-y · Zbl 1400.14123
[45] Magnus, W.: Rings of Fricke characters and automorphism groups of free groups. Math. Z. 170(1), 91-103 (1980) · Zbl 0433.20033 · doi:10.1007/BF01214715
[46] Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994) · Zbl 0797.14004
[47] Muñoz, V.: The \[{\rm SL}(2,\mathbb{C})\] SL(2,C)-character varieties of torus knots. Rev. Mat. Complut. 22(2), 489-497 (2009) · Zbl 1182.14007 · doi:10.5209/rev_REMA.2009.v22.n2.16290
[48] Martín Morales, J., Oller-Marcén, A.M.: Combinatorial aspects of the character variety of a family of one-relator groups. Topol. Appl. 156(14), 2376-2389 (2009) · Zbl 1219.20007 · doi:10.1016/j.topol.2009.06.011
[49] Macasieb, M.L., Petersen, K.L., van Luijk, R.M.: On character varieties of two-bridge knot groups. Proc. Lond. Math. Soc. (3) 103(3), 473-507 (2011) · Zbl 1231.57013 · doi:10.1112/plms/pdr003
[50] Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ, 3:369-377, (1963/1964) · Zbl 0146.04501
[51] Narasimhan, M.S., Seshadri, C.S.: Holomorphic vector bundles on a compact Riemann surface. In: Differential Analysis, Bombay Colloq., 1964, pp. 249-250. Oxford University Press, London (1964) · Zbl 0122.16701
[52] Oller-Marcén, A.M.: The \[{\rm SL}(2,\mathbb{C})\] SL(2,C) character variety of a class of torus knots. Extr. Math. 23(2), 163-172 (2008) · Zbl 1203.57003
[53] Petersen, K.L.: \[A\] A-polynomials of a family of two-bridge knots. N. Y. J. Math. 21, 847-881 (2015) · Zbl 1347.57012
[54] Procesi, C.: The invariant theory of \[n\times n\] n×n matrices. Adv. Math. 19(3), 306-381 (1976) · Zbl 0331.15021 · doi:10.1016/0001-8708(76)90027-X
[55] Przytycki, J.H., Sikora, A.S.: On skein algebras and \[{\rm Sl}_2({ C})\] Sl2(C)-character varieties. Topology 39(1), 115-148 (2000) · Zbl 0958.57011 · doi:10.1016/S0040-9383(98)00062-7
[56] Petersen, K.L., Tran, A.T.: Character varieties of double twist links. Algebr. Geom. Topol. 15(6), 3569-3598 (2015) · Zbl 1360.57021 · doi:10.2140/agt.2015.15.3569
[57] Qazaqzeh, K.: The character variety of a family of one-relator groups. Int. J. Math. 23(1), 1250015 (2012) · Zbl 1241.57020 · doi:10.1142/S0129167X11007574
[58] Rapinchuk, I.A.: On the character varieties of finitely generated groups. Math. Res. Lett. 22(2), 579-604 (2015) · Zbl 1330.20071 · doi:10.4310/MRL.2015.v22.n2.a12
[59] Razmyslov, J.P.: Identities with trace in full matrix algebras over a field of characteristic zero. Izv. Akad. Nauk SSSR Ser. Mat 38, 723-756 (1974)
[60] Rolfsen, D.: Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif (1976) · Zbl 0339.55004
[61] Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26(3), 225-274 (1977) · Zbl 0371.14009 · doi:10.1016/0001-8708(77)90041-X
[62] Sibirskiĭ, K.S.: Algebraic invariants of a system of matrices. Sibirsk. Mat. Ž. 9, 152-164 (1968) · Zbl 0273.15024
[63] Sikora, Adam \[S.: \text{ SL }_n\] SLn-character varieties as spaces of graphs. Trans. Am. Math. Soc. 353(7), 2773-2804 (2001). (electronic) · Zbl 1046.57014 · doi:10.1090/S0002-9947-01-02700-3
[64] Sikora, A.S.: Character varieties. Trans. Am. Math. Soc. 364(10), 5173-5208 (2012) · Zbl 1291.14022 · doi:10.1090/S0002-9947-2012-05448-1
[65] Sikora, A.S.: Generating sets for coordinate rings of character varieties. J. Pure Appl. Algebra 217(11), 2076-2087 (2013) · Zbl 1286.14014 · doi:10.1016/j.jpaa.2013.01.005
[66] Sikora, A.\[S.: G\] G-character varieties for \[G=SO(n,\mathbb{C})\] G=SO(n,C) and other not simply connected groups. J. Algebra 429, 324-341 (2015) · Zbl 1330.14083 · doi:10.1016/j.jalgebra.2014.12.036
[67] Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47-129 (1994) · Zbl 0891.14005 · doi:10.1007/BF02698887
[68] Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math., (80):5-79 (1995), (1994) · Zbl 0891.14006
[69] Teranishi, Y.: The Hilbert series of rings of matrix concomitants. Nagoya Math. J. 111, 143-156 (1988) · Zbl 0675.16010 · doi:10.1017/S0027763000001057
[70] Teranishi, Y.: Explicit descriptions of trace rings of generic \[22\] by \[22\] matrices. Nagoya Math. J. 121, 149-159 (1991) · Zbl 0728.16011 · doi:10.1017/S0027763000003433
[71] Thurston, W.P.: In: Levy S. (eds.) Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series, Princeton University Press, Princeton (1997) · Zbl 0873.57001
[72] Tran, A.T.: The universal character ring of some families of one-relator groups. Algebr. Geom. Topol. 13(4), 2317-2333 (2013) · Zbl 1280.57014 · doi:10.2140/agt.2013.13.2317
[73] Tran, A.T.: Character varieties of \[(-2,2m+1,2n)\](-2,2m+1,2n)-pretzel links and twisted Whitehead links. J. Knot Theory Ramif. 25(2), 1650007 (2016) · Zbl 1341.57012 · doi:10.1142/S0218216516500073
[74] Vogt, H.: Sur les invariants fondamentaux des équations différentielles linéaires du second ordre. Ann. Sci. École Norm. Sup. 3(6), 3-71 (1889) · JFM 21.0314.01 · doi:10.24033/asens.331
[75] Weyl, H.: The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, Their invariants and representations, Fifteenth printing, Princeton Paperbacks (1997) · Zbl 1244.57007
[76] Wielenberg, N.: The structure of certain subgroups of the Picard group. Math. Proc. Camb. Philos. Soc. 84(3), 427-436 (1978) · Zbl 0399.57005 · doi:10.1017/S0305004100055250
[77] Witten, E.: Supersymmetric index in four-dimensional gauge theories. Adv. Theor. Math. Phys. 5(5), 841-907 (2001) · Zbl 1019.81040 · doi:10.4310/ATMP.2001.v5.n5.a1
[78] Wolfram Research, Inc. Mathematica 11.0 · Zbl 1403.14011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.