×

Finite-time stability of impulsive pantograph systems with applications. (English) Zbl 1480.93365

Summary: This paper is mainly concerned with the finite-time stability of impulsive pantograph systems. By proposing a novel Razumikhin condition, and combining Lyapunov-Razumikhin method with average impulsive interval approach, we derive some criteria to ensure that the addressed impulsive pantograph systems are finite-time stable. Also, based on this Razumikhin condition, new Lyapunov-based conditions are obtained for the finite-time stability and the global power stability of nonlinear pantograph systems. The validity of our results is finally illustrated by three examples.

MSC:

93D40 Finite-time stability
93C27 Impulsive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amato, F.; Ambrosino, R.; Ariola, M.; De Tommasi, G., Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties, Internat. J. Robust Nonlinear Control, 21, 10, 1080-1092 (2011) · Zbl 1225.93087
[2] Amato, F.; Ambrosino, R.; Ariola, M.; De Tommasi, G., Finite-time stabilization of impulsive dynamical linear systems, Nonlinear Anal. Hybrid Syst., 5, 89-101 (2011) · Zbl 1371.93159
[3] Amato, F.; Ambrosino, R.; Ariola, M.; Cosentino, C., Finite-Time Stability and Control (2014), Springer-Verlag: Springer-Verlag London · Zbl 1297.93001
[4] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Automat. Control, 43, 5, 678-682 (1998) · Zbl 0925.93821
[5] Hien, L. V.; Son, D. T., Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays, Appl. Math. Comput., 251, 14-23 (2015) · Zbl 1328.92010
[6] Kamenkov, G., On stability of motion over a finite interval of time, J. Appl. Math. Mech USSR, 17, 529-540 (1953)
[7] Lee, L.; Liu, Y.; Liang, J.; Cai, X., Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems, ISA Trans., 57, 172-178 (2015)
[8] Li, X.; Yang, X.; Song, S., Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103, 135-140 (2019) · Zbl 1415.93188
[9] Li, H.; Zhao, S.; He, W.; Lu, R., Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone, Automatica, 100, 99-107 (2019) · Zbl 1411.93102
[10] Wu, Y.; Cao, J.; Alofi, A.; Mazrooei, A.; Elaiw, A., Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay, Neural Netw., 69, 135-143 (2015) · Zbl 1398.34033
[11] Yang, R.; Wang, Y., Finite-time stability and stabilization of a class of nonlinear time-delay systems, SIAM J. Control Optim., 50, 50, 3113-3131 (2012) · Zbl 1279.34087
[12] Lv, X.; Li, X., Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications, ISA Trans., 70, 30-36 (2017)
[13] Yang, X.; Lu, J., Finite-time synchronization of coupled networks with Markovian topology and impulsive effects, IEEE Trans. Automat. Control, 61, 8, 2256-2261 (2016) · Zbl 1359.93459
[14] Liu, B., Finite-time stability of a class of CNNs with heterogeneous proportional delays and oscillating leakage coefficients, Neural Process. Lett., 45, 1, 109-119 (2017)
[15] Xiong, X.; Tang, R.; Yang, X., Finite-time synchronization of memristive neural networks with proportional delay, Neural Process. Lett., 50, 2, 1139-1152 (2019)
[16] Ockendon, J. R.; Taylor, A. B., The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 332, 447-468 (1971)
[17] Guan, K.; Xi, J., A novel delay-dependent criterion for global power stability of cellular neural networks with proportional delay, Neural Process. Lett., 51, 867-880 (2020)
[18] Huang, C.; Long, X.; Cao, J., Stability of antiperiodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43, 9, 6093-6102 (2020) · Zbl 1456.34071
[19] Kinh, C. T.; Hien, L. V.; Ke, T. D., Power-rate synchronization of fractional-order nonautonomous neural networks with heterogeneous proportional delays, Neural Process. Lett., 47, 1, 139-151 (2018)
[20] Aiello, W. G.; Freedman, H. I.; Wu, J., Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52, 3, 855-869 (1992) · Zbl 0760.92018
[21] Fox, L.; Mayers, D. F.; Ockendon, J. R.; Taylor, A. B., On a functional differential equation, J. Inst. Math. Appl., 8, 271-307 (1971) · Zbl 0251.34045
[22] Hien, L. V.; Son, D. T.; Trinh, H., On global dissipativity of nonautonomous neural networks with multiple proportional delays, IEEE Trans. Neural Netw. Learn. Syst., 29, 1, 225-231 (2018)
[23] Iserles, A., On nonlinear delay differential equations, Trans. Amer. Math. Soc., 344, 441-477 (1994) · Zbl 0804.34065
[24] Kato, T.; McLEOD, J. B., The functional-differential equation \(y^\prime ( x ) = a y ( \lambda x ) + b y ( x )\), Bull. Amer. Math. Soc., 77, 6, 891-937 (1971) · Zbl 0236.34064
[25] Guan, K.; Wang, Q., Impulsive control for a class of cellular neural networks with proportional delay, Neural Process. Lett., 48, 3, 1459-1479 (2018)
[26] Zhou, L.; Zhao, Z., Exponential synchronization and polynomial synchronization of recurrent neural networks with and without proportional delays, Neurocomputing, 372, 109-116 (2020)
[27] Li, X.; Wang, N.; Lou, J.; Lu, J., Global \(\mu \)-synchronization of impulsive pantograph neural networks, Neural Netw., 131, 78-92 (2020) · Zbl 1478.93657
[28] Iswarya, M.; Raja, R.; Rajchakit, G.; Cao, J.; Alzabut, J.; Huang, C., A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with time-varying delays, Adv. Differential Equations, 2019, 502 (2019) · Zbl 1487.34161
[29] Guan, K.; Tan, F.; Yang, J., Global power synchronization of complex dynamical networks with proportional delay and impulsive effects, Neurocomputing, 366, 23-34 (2019)
[30] Hu, M.; Xiao, J.; Xiao, R.; Chen, W., Impulsive effects on the stability and stabilization of positive systems with delays, J. Franklin Inst., 354, 10, 4034-4054 (2017) · Zbl 1367.93560
[31] Guan, K., Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control, Neurocomputing, 283, 256-265 (2018)
[32] Stamova, I., Stability Analysis of Impulsive Functional Differential Equations (2009), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1189.34001
[33] Li, X.; O’Regan, D.; Akca, H., Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80, 1, 85-99 (2015) · Zbl 1316.34079
[34] Li, X.; Shen, J.; Rakkiyappan, R., Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329, 14-22 (2018) · Zbl 1427.34101
[35] Li, X.; Yang, X.; Huang, T., Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342, 130-146 (2019) · Zbl 1428.34113
[36] Li, X.; Ding, Y., Razumikhin-type theorems for time-delay systems with persistent impulses, Systems Control Lett., 107, 22-27 (2017) · Zbl 1376.93088
[37] Lu, J.; Ho, D. W.C.; Cao, J., A unified synchronization criterion for impulsive dynamical networks, Automatica, 46, 7, 1215-1221 (2010) · Zbl 1194.93090
[38] Tan, J.; Li, C., Finite-time stability of neural networks with impulse effects and time-varying delay, Neural Process. Lett., 46, 29-39 (2017)
[39] Wang, Y.; Shi, X.; Zuo, Z.; Chen, M. Z.Q.; Shao, Y., On finite-time stability for nonlinear impulsive switched systems, Nonlinear Anal. RWA, 14, 1, 807-814 (2013) · Zbl 1270.34158
[40] Li, X.; Cao, J., An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Trans. Automat. Control, 62, 7, 3618-3625 (2017) · Zbl 1370.34131
[41] Yang, H.; Zhang, Y., Finite-time stability of homogeneous impulsive positive systems of degree one, Circuits Syst. Signal Process., 38, 5323-5341 (2019)
[42] Wu, K.; Na, M.; Wang, L.; Ding, X.; Wu, B., Finite-time stability of impulsive reaction-diffusion systems with and without time delay, Appl. Math. Comput., 363, Article 124591 pp. (2019) · Zbl 1433.35176
[43] Li, H.; Li, C.; Huang, T.; Ouyang, D., Fixed-time stability and stabilization of impulsive dynamical systems, J. Franklin Inst., 354, 18, 8626-8644 (2017) · Zbl 1380.93188
[44] Zou, Y.; Yang, X.; Tang, R.; Cheng, Z., Finite-time quantized synchronization of coupled discontinuous competitive neural networks with proportional delay and impulsive effects, J. Franklin Inst., 357, 11136-11152 (2020) · Zbl 1450.93072
[45] Pandolfi, L., Some observations on the asymptotic behaviors of the solutions of the equation \(x^\prime ( t ) = A ( t ) x ( \lambda t ) + B ( t ) x ( t ) , \lambda > 0\), J. Math. Anal. Appl., 67, 483-489 (1979) · Zbl 0413.34079
[46] Zhou, L., Global asymptotic stability of cellular neural networks with proportional delays, Nonlinear Dynam., 77, 41-47 (2014) · Zbl 1314.92021
[47] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford University Press: Oxford University Press Oxford · Zbl 0749.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.