Arnaiz, Victor; Castro, Ángel Singularity formation for the fractional Euler-alignment system in 1D. (English) Zbl 07288862 Trans. Am. Math. Soc. 374, No. 1, 487-514 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 35Q92 35R11 35B44 PDF BibTeX XML Cite \textit{V. Arnaiz} and \textit{Á. Castro}, Trans. Am. Math. Soc. 374, No. 1, 487--514 (2021; Zbl 07288862) Full Text: DOI
Dozzi, Marco; Kolkovska, Ekaterina Todorova; López-Mimbela, José Alfredo Global and non-global solutions of a fractional reaction-diffusion equation perturbed by a fractional noise. (English) Zbl 07316797 Stochastic Anal. Appl. 38, No. 6, 959-978 (2020). MSC: 35R60 60H15 74H35 35B44 35K58 35B40 PDF BibTeX XML Cite \textit{M. Dozzi} et al., Stochastic Anal. Appl. 38, No. 6, 959--978 (2020; Zbl 07316797) Full Text: DOI
Gladkov, Alexander; Guedda, Mohammed Influence of variable coefficients on global existence of solutions of semilinear heat equations with nonlinear boundary conditions. (English) Zbl 07307876 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 63, 11 p. (2020). MSC: 35B44 35K58 35K61 PDF BibTeX XML Cite \textit{A. Gladkov} and \textit{M. Guedda}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 63, 11 p. (2020; Zbl 07307876) Full Text: DOI
Zhong, Penghong; Yang, Ganshan; Ma, Xuan Global existence of Landau-Lifshitz-Gilbert equation and self-similar blowup of harmonic map heat flow on \(\mathbb{S}^2\). (English) Zbl 07304329 Math. Comput. Simul. 174, 1-18 (2020). MSC: 35C06 35B44 58E20 53C43 PDF BibTeX XML Cite \textit{P. Zhong} et al., Math. Comput. Simul. 174, 1--18 (2020; Zbl 07304329) Full Text: DOI
Umarov, Kh. G. Cauchy problem for the equation of torsional vibrations of a rod in a viscoelastic medium. (English. Russian original) Zbl 1452.74052 Differ. Equ. 56, No. 10, 1345-1362 (2020); translation from Differ. Uravn. 56, No. 10, 1376-1393 (2020). MSC: 74H45 74K10 74H20 74H25 74D05 35Q74 PDF BibTeX XML Cite \textit{Kh. G. Umarov}, Differ. Equ. 56, No. 10, 1345--1362 (2020; Zbl 1452.74052); translation from Differ. Uravn. 56, No. 10, 1376--1393 (2020) Full Text: DOI
Korpusov, Maxim O.; Lukyanenko, Dmitry V.; Panin, Alexander A. Blow-up for Joseph-Egri equation: theoretical approach and numerical analysis. (English) Zbl 1452.35171 Math. Methods Appl. Sci. 43, No. 11, 6771-6800 (2020). MSC: 35Q53 35G31 65L04 65L12 65M20 35B44 PDF BibTeX XML Cite \textit{M. O. Korpusov} et al., Math. Methods Appl. Sci. 43, No. 11, 6771--6800 (2020; Zbl 1452.35171) Full Text: DOI
Ceballos-Lira, Marcos J.; Pérez, Aroldo Global solutions and blowing-up solutions for a nonautonomous and nonlocal in space reaction-diffusion system with Dirichlet boundary conditions. (English) Zbl 07268218 Fract. Calc. Appl. Anal. 23, No. 4, 1025-1053 (2020). MSC: 35K57 35B44 35B09 35C15 60G52 PDF BibTeX XML Cite \textit{M. J. Ceballos-Lira} and \textit{A. Pérez}, Fract. Calc. Appl. Anal. 23, No. 4, 1025--1053 (2020; Zbl 07268218) Full Text: DOI
Gao, Yunlong; Lin, Guoguang; Ma, Lei Blow-up of solutions for a class of Kirchhoff type equations with nonlinear logarithmic source term. (Chinese. English summary) Zbl 07267216 J. Yunnan Univ., Nat. Sci. 42, No. 3, 420-428 (2020). MSC: 35B44 35L05 35L70 PDF BibTeX XML Cite \textit{Y. Gao} et al., J. Yunnan Univ., Nat. Sci. 42, No. 3, 420--428 (2020; Zbl 07267216) Full Text: DOI
Maheux, Patrick; Pierfelice, Vittoria The Keller-Segel system on the two-dimensional-hyperbolic space. (English) Zbl 1451.35034 SIAM J. Math. Anal. 52, No. 5, 5036-5065 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B44 35R01 35Q92 58J35 92C17 PDF BibTeX XML Cite \textit{P. Maheux} and \textit{V. Pierfelice}, SIAM J. Math. Anal. 52, No. 5, 5036--5065 (2020; Zbl 1451.35034) Full Text: DOI
Tanaka, Yuya; Yokota, Tomomi Blow-up in a parabolic-elliptic Keller-Segel system with density-dependent sublinear sensitivity and logistic source. (English) Zbl 1452.35049 Math. Methods Appl. Sci. 43, No. 12, 7372-7396 (2020). Reviewer: Neng Zhu (Nanchang) MSC: 35B44 35K65 92C17 PDF BibTeX XML Cite \textit{Y. Tanaka} and \textit{T. Yokota}, Math. Methods Appl. Sci. 43, No. 12, 7372--7396 (2020; Zbl 1452.35049) Full Text: DOI
Carrillo, José A.; Hopf, Katharina; Wolfram, Marie-Therese Numerical study of Bose-Einstein condensation in the Kaniadakis-Quarati model for bosons. (English) Zbl 1441.35235 Kinet. Relat. Models 13, No. 3, 507-529 (2020). MSC: 35Q84 35Q40 35K20 35B44 65M06 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Kinet. Relat. Models 13, No. 3, 507--529 (2020; Zbl 1441.35235) Full Text: DOI
Asogwa, Sunday A.; Mijena, Jebessa B.; Nane, Erkan Blow-up results for space-time fractional stochastic partial differential equations. (English) Zbl 1453.60113 Potential Anal. 53, No. 2, 357-386 (2020). MSC: 60H15 35B44 35R11 35R60 35K57 PDF BibTeX XML Cite \textit{S. A. Asogwa} et al., Potential Anal. 53, No. 2, 357--386 (2020; Zbl 1453.60113) Full Text: DOI
Liu, Xuan; Zhang, Ting \(H^2\) blowup result for a Schrödinger equation with nonlinear source term. (English) Zbl 1446.35185 Electron Res. Arch. 28, No. 2, 777-794 (2020). MSC: 35Q55 35L71 35B30 35B44 PDF BibTeX XML Cite \textit{X. Liu} and \textit{T. Zhang}, Electron Res. Arch. 28, No. 2, 777--794 (2020; Zbl 1446.35185) Full Text: DOI
Dimova, Milena; Kolkovska, Natalia; Kutev, Nikolai Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. (English) Zbl 1442.35260 Electron Res. Arch. 28, No. 2, 671-689 (2020). MSC: 35L71 35B44 35B40 35L15 PDF BibTeX XML Cite \textit{M. Dimova} et al., Electron Res. Arch. 28, No. 2, 671--689 (2020; Zbl 1442.35260) Full Text: DOI
Liu, Xu; Zhou, Jun Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. (English) Zbl 1442.35247 Electron Res. Arch. 28, No. 2, 599-625 (2020). MSC: 35L35 35L76 35B40 74K20 35B44 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhou}, Electron Res. Arch. 28, No. 2, 599--625 (2020; Zbl 1442.35247) Full Text: DOI
Coclite, Giuseppe Maria; Dipierro, Serena; Maddalena, Francesco; Valdinoci, Enrico Singularity formation in fractional Burgers’ equations. (English) Zbl 1443.35165 J. Nonlinear Sci. 30, No. 4, 1285-1305 (2020). MSC: 35R11 35L03 35L67 35B44 PDF BibTeX XML Cite \textit{G. M. Coclite} et al., J. Nonlinear Sci. 30, No. 4, 1285--1305 (2020; Zbl 1443.35165) Full Text: DOI
Guo, Siyan; Yang, Yanbing High energy blow up for two-dimensional generalized exponential-type Boussinesq equation. (English) Zbl 1439.35087 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111864, 9 p. (2020). MSC: 35B44 35Q35 PDF BibTeX XML Cite \textit{S. Guo} and \textit{Y. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111864, 9 p. (2020; Zbl 1439.35087) Full Text: DOI
Song, Xianfa Some results on the Gierer-Meinhardt model with critical exponent \(p - 1 = r\). (English) Zbl 1442.35192 Appl. Math. Lett. 106, Article ID 106348, 5 p. (2020). MSC: 35K51 35A01 35B33 35B44 35K58 35K67 PDF BibTeX XML Cite \textit{X. Song}, Appl. Math. Lett. 106, Article ID 106348, 5 p. (2020; Zbl 1442.35192) Full Text: DOI
Li, Xiaoliang; Liu, Baiyu Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. (English) Zbl 1446.35060 Commun. Pure Appl. Anal. 19, No. 6, 3093-3112 (2020). MSC: 35K58 35B40 35B44 35K20 35K91 35K55 PDF BibTeX XML Cite \textit{X. Li} and \textit{B. Liu}, Commun. Pure Appl. Anal. 19, No. 6, 3093--3112 (2020; Zbl 1446.35060) Full Text: DOI
Li, Huiling; Wang, Xiaoliu; Lu, Xueyan A nonlinear Stefan problem with variable exponent and different moving parameters. (English) Zbl 1442.35559 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1671-1698 (2020). MSC: 35R35 35A01 35A02 35B09 35B44 35B50 35B51 35G25 PDF BibTeX XML Cite \textit{H. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1671--1698 (2020; Zbl 1442.35559) Full Text: DOI
Anderson, Jeffrey R.; Deng, Keng Global solvability for a diffusion model with absorption and memory-driven flux at the boundary. (English) Zbl 1446.35065 Z. Angew. Math. Phys. 71, No. 2, Paper No. 50, 15 p. (2020). MSC: 35K91 35A01 35B44 35K20 35K05 PDF BibTeX XML Cite \textit{J. R. Anderson} and \textit{K. Deng}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 50, 15 p. (2020; Zbl 1446.35065) Full Text: DOI
Ma, He; Meng, Fanmo; Wang, Xingchang High initial energy finite time blowup with upper bound of blowup time of solution to semilinear parabolic equations. (English) Zbl 1439.35184 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111810, 8 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35K05 35B44 PDF BibTeX XML Cite \textit{H. Ma} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111810, 8 p. (2020; Zbl 1439.35184) Full Text: DOI
Wang, Yu; Wu, Furong; Yang, Yanbing Arbitrarily positive initial energy blowup and blowup time for some fourth-order viscous wave equation. (English) Zbl 1441.35075 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111776, 8 p. (2020). MSC: 35B44 35L76 35L35 PDF BibTeX XML Cite \textit{Y. Wang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111776, 8 p. (2020; Zbl 1441.35075) Full Text: DOI
Parshad, Rana D.; Wickramsooriya, Sureni; Bailey, Susan A remark on “Biological control through provision of additional food to predators: a theoretical study”. (English) Zbl 07186943 Theor. Popul. Biol. 132, 60-68 (2020). MSC: 34C11 34D05 92D25 92D40 PDF BibTeX XML Cite \textit{R. D. Parshad} et al., Theor. Popul. Biol. 132, 60--68 (2020; Zbl 07186943) Full Text: DOI
Jleli, Mohamed; Samet, Bessem; Souplet, Philippe Discontinuous critical Fujita exponents for the heat equation with combined nonlinearities. (English) Zbl 1439.35199 Proc. Am. Math. Soc. 148, No. 6, 2579-2593 (2020). Reviewer: Philippe Laurençot (Toulouse) MSC: 35K15 35B44 35B33 35K05 35K57 PDF BibTeX XML Cite \textit{M. Jleli} et al., Proc. Am. Math. Soc. 148, No. 6, 2579--2593 (2020; Zbl 1439.35199) Full Text: DOI
Dimova, M.; Kolkovska, N.; Kutev, N. Global behavior of the solutions to nonlinear Klein-Gordon equation with supercritical energy. (English) Zbl 07184990 J. Math. Anal. Appl. 487, No. 2, Article ID 124029, 15 p. (2020). MSC: 35 83 PDF BibTeX XML Cite \textit{M. Dimova} et al., J. Math. Anal. Appl. 487, No. 2, Article ID 124029, 15 p. (2020; Zbl 07184990) Full Text: DOI
Pang, Yue; Yang, Yanbing A note on finite time blowup for dissipative Klein-Gordon equation. (English) Zbl 1435.35338 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111729, 7 p. (2020). MSC: 35Q53 35B65 35B44 35A01 PDF BibTeX XML Cite \textit{Y. Pang} and \textit{Y. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111729, 7 p. (2020; Zbl 1435.35338) Full Text: DOI
Del Pino, Manuel; Musso, Monica; Wei, Juncheng; Zhou, Yifu Type II finite time blow-up for the energy critical heat equation in \(\mathbb{R}^4\). (English) Zbl 1439.35284 Discrete Contin. Dyn. Syst. 40, No. 6, 3327-3355 (2020). MSC: 35K58 35B40 PDF BibTeX XML Cite \textit{M. Del Pino} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3327--3355 (2020; Zbl 1439.35284) Full Text: DOI
Xu, Guangyu; Mu, Chunlai; Li, Dan Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy. (English) Zbl 1435.35235 Commun. Pure Appl. Anal. 19, No. 5, 2491-2512 (2020). MSC: 35L52 35L71 35A01 35B06 35B40 35B44 PDF BibTeX XML Cite \textit{G. Xu} et al., Commun. Pure Appl. Anal. 19, No. 5, 2491--2512 (2020; Zbl 1435.35235) Full Text: DOI
Fuest, Mario Finite-time blow-up in a two-dimensional Keller-Segel system with an environmental dependent logistic source. (English) Zbl 07157568 Nonlinear Anal., Real World Appl. 52, Article ID 103022, 14 p. (2020). MSC: 35 92 PDF BibTeX XML Cite \textit{M. Fuest}, Nonlinear Anal., Real World Appl. 52, Article ID 103022, 14 p. (2020; Zbl 07157568) Full Text: DOI
Di, Huafei; Shang, Yadong; Song, Zefang Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity. (English) Zbl 1439.35313 Nonlinear Anal., Real World Appl. 51, Article ID 102968, 22 p. (2020). MSC: 35L20 35L71 35B40 35B44 PDF BibTeX XML Cite \textit{H. Di} et al., Nonlinear Anal., Real World Appl. 51, Article ID 102968, 22 p. (2020; Zbl 1439.35313) Full Text: DOI
Carrillo, José A.; Hopf, Katharina; Rodrigo, José L. On the singularity formation and relaxation to equilibrium in 1D Fokker-Planck model with superlinear drift. (English) Zbl 1433.35408 Adv. Math. 360, Article ID 106883, 66 p. (2020). MSC: 35Q84 35K55 35K65 35K67 82C31 35B65 35B40 35A01 35A02 35D30 35D40 35B44 35R06 82C10 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Adv. Math. 360, Article ID 106883, 66 p. (2020; Zbl 1433.35408) Full Text: DOI arXiv
Hernández-Bermejo, Benito; Iagar, Razvan Gabriel; Gordoa, Pilar R.; Pickering, Andrew; Sánchez, Ariel Equivalence and finite time blow-up of solutions and interfaces for two nonlinear diffusion equations. (English) Zbl 1427.35142 J. Math. Anal. Appl. 482, No. 1, Article ID 123503, 16 p. (2020). MSC: 35K65 35K55 35B40 35K15 PDF BibTeX XML Cite \textit{B. Hernández-Bermejo} et al., J. Math. Anal. Appl. 482, No. 1, Article ID 123503, 16 p. (2020; Zbl 1427.35142) Full Text: DOI arXiv
Kogelbauer, Florian On the global well-posedness of the inviscid generalized Proudman-Johnson equation using flow map arguments. (English) Zbl 1428.35097 J. Differ. Equations 268, No. 3, 1050-1080 (2020). MSC: 35G25 35B44 PDF BibTeX XML Cite \textit{F. Kogelbauer}, J. Differ. Equations 268, No. 3, 1050--1080 (2020; Zbl 1428.35097) Full Text: DOI arXiv
Biler, Piotr Singularities of solutions to chemotaxis systems. (English) Zbl 1450.35001 De Gruyter Series in Mathematics and Life Sciences 6. Berlin: De Gruyter (ISBN 978-3-11-059789-9/hbk; 978-3-11-059953-4/ebook). xxiv, 205 p. (2020). Reviewer: Christian Stinner (Darmstadt) MSC: 35-02 35Q92 35B40 35B44 35B51 35K55 92C17 35A21 35R11 35K45 PDF BibTeX XML Cite \textit{P. Biler}, Singularities of solutions to chemotaxis systems. Berlin: De Gruyter (2020; Zbl 1450.35001) Full Text: DOI
Cazenave, Thierry; Martel, Yvan; Zhao, Lifeng Solutions blowing up on any given compact set for the energy subcritical wave equation. (English) Zbl 1437.35493 J. Differ. Equations 268, No. 2, 680-706 (2020). MSC: 35L71 35L15 35B44 35B40 PDF BibTeX XML Cite \textit{T. Cazenave} et al., J. Differ. Equations 268, No. 2, 680--706 (2020; Zbl 1437.35493) Full Text: DOI
Parshad, Rana D.; Takyi, Eric M.; Kouachi, Said A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators”. (English) Zbl 1448.34073 Chaos Solitons Fractals 123, 201-205 (2019). MSC: 34C11 34D45 92D25 PDF BibTeX XML Cite \textit{R. D. Parshad} et al., Chaos Solitons Fractals 123, 201--205 (2019; Zbl 1448.34073) Full Text: DOI
Fu, Meimei; Xie, Junhui On solutions for a class of \(p\)-Laplace equation with nonlocal boundary condition. (Chinese. English summary) Zbl 1449.35250 Math. Appl. 32, No. 4, 860-864 (2019). MSC: 35K20 35K55 35B44 PDF BibTeX XML Cite \textit{M. Fu} and \textit{J. Xie}, Math. Appl. 32, No. 4, 860--864 (2019; Zbl 1449.35250)
Adou, Koffi Achille; Touré, Kidjégbo Augustin; Coulibaly, Adama On the numerical quenching time at blow-up. (English) Zbl 1435.65116 Adv. Math., Sci. J. 8, No. 2, 71-85 (2019). MSC: 65M06 35B44 35K58 65M12 PDF BibTeX XML Cite \textit{K. A. Adou} et al., Adv. Math., Sci. J. 8, No. 2, 71--85 (2019; Zbl 1435.65116) Full Text: Link
Korpusov, Maksim O.; Panin, Aleksandr A. Instantaneous blow-up versus local solubility of the Cauchy problem for a two-dimensional equation of a semiconductor with heating. (English. Russian original) Zbl 1437.35107 Izv. Math. 83, No. 6, 1174-1200 (2019); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 83, No. 6, 104-132 (2019). MSC: 35B44 35K30 35D30 35K58 PDF BibTeX XML Cite \textit{M. O. Korpusov} and \textit{A. A. Panin}, Izv. Math. 83, No. 6, 1174--1200 (2019; Zbl 1437.35107); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 83, No. 6, 104--132 (2019) Full Text: DOI
Cazenave, Thierry; Martel, Yvan; Zhao, Lifeng Solutions with prescribed local blow-up surface for the nonlinear wave equation. (English) Zbl 1437.35494 Adv. Nonlinear Stud. 19, No. 4, 639-675 (2019). MSC: 35L71 35L15 35B44 35B40 PDF BibTeX XML Cite \textit{T. Cazenave} et al., Adv. Nonlinear Stud. 19, No. 4, 639--675 (2019; Zbl 1437.35494) Full Text: DOI
Hadžić, Mahir; Raphaël, Pierre On melting and freezing for the 2D radial Stefan problem. (English) Zbl 1446.35271 J. Eur. Math. Soc. (JEMS) 21, No. 11, 3259-3341 (2019). Reviewer: Rodica Luca (Iaşi) MSC: 35R35 35A01 35B44 35P15 35K20 PDF BibTeX XML Cite \textit{M. Hadžić} and \textit{P. Raphaël}, J. Eur. Math. Soc. (JEMS) 21, No. 11, 3259--3341 (2019; Zbl 1446.35271) Full Text: DOI
Arbunich, Jack; Klein, Christian; Sparber, Christof On a class of derivative nonlinear Schrödinger-type equations in two spatial dimensions. (English) Zbl 1427.65277 ESAIM, Math. Model. Numer. Anal. 53, No. 5, 1477-1505 (2019). MSC: 65M70 65L05 35Q55 35B44 35A01 PDF BibTeX XML Cite \textit{J. Arbunich} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 5, 1477--1505 (2019; Zbl 1427.65277) Full Text: DOI
Luo, Guo; Hou, Thomas Y. Formation of finite-time singularities in the 3D axisymmetric Euler equations: a numerics guided study. (English) Zbl 1427.35190 SIAM Rev. 61, No. 4, 793-835 (2019). MSC: 35Q31 76B03 65M60 65M06 65M20 65L06 35B44 PDF BibTeX XML Cite \textit{G. Luo} and \textit{T. Y. Hou}, SIAM Rev. 61, No. 4, 793--835 (2019; Zbl 1427.35190) Full Text: DOI
Dávila, Juan; Del Pino, Manuel; Pesce, Catalina; Wei, Juncheng Blow-up for the 3-dimensional axially symmetric harmonic map flow into \(S^2\). (English) Zbl 1425.35107 Discrete Contin. Dyn. Syst. 39, No. 12, 6913-6943 (2019). MSC: 35K58 35B44 35R01 PDF BibTeX XML Cite \textit{J. Dávila} et al., Discrete Contin. Dyn. Syst. 39, No. 12, 6913--6943 (2019; Zbl 1425.35107) Full Text: DOI arXiv
Hong, Liang; Wang, Jinhuan; Yu, Hao; Zhang, Ying Critical mass for a two-species chemotaxis model with two chemicals in \(\mathbb{R}^2\). (English) Zbl 1442.35472 Nonlinearity 32, No. 12, 4762-4778 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B44 92C17 35A01 PDF BibTeX XML Cite \textit{L. Hong} et al., Nonlinearity 32, No. 12, 4762--4778 (2019; Zbl 1442.35472) Full Text: DOI
Ceballos-Lira, Marcos Josías; Pérez, Aroldo Blow up and globality of solutions for a nonautonomous semilinear heat equation with Dirichlet condition. (English) Zbl 1423.35191 Rev. Colomb. Mat. 53, No. 1, 57-72 (2019). MSC: 35K57 35B44 35B09 35C15 60G51 PDF BibTeX XML Cite \textit{M. J. Ceballos-Lira} and \textit{A. Pérez}, Rev. Colomb. Mat. 53, No. 1, 57--72 (2019; Zbl 1423.35191) Full Text: Link
Jian, Yuhua; Yang, Zuodong Global existence and blow-up in a \(p(x)\)-Laplace equation with Dirichlet boundary conditions. (English) Zbl 1438.35240 J. Math. Study 52, No. 2, 111-126 (2019). MSC: 35K59 35K20 35A01 35B44 35D30 PDF BibTeX XML Cite \textit{Y. Jian} and \textit{Z. Yang}, J. Math. Study 52, No. 2, 111--126 (2019; Zbl 1438.35240) Full Text: DOI
Cazenave, Thierry; Snoussi, Seifeddine Finite-time blowup for some nonlinear complex Ginzburg-Landau equations. (English) Zbl 1436.35295 Ben Ayed, Mohamed (ed.) et al., Partial differential equations arising from physics and geometry. A volume in memory of Abbas Bahri. Based on the conference, Hammamet, Tunisia, March 20–29, 2015. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 450, 172-214 (2019). MSC: 35Q56 35B44 PDF BibTeX XML Cite \textit{T. Cazenave} and \textit{S. Snoussi}, Lond. Math. Soc. Lect. Note Ser. 450, 172--214 (2019; Zbl 1436.35295) Full Text: DOI
Bian, Dongfen; Li, Jinkai Finite time blow up of compressible Navier-Stokes equations on half space or outside a fixed ball. (English) Zbl 1428.35274 J. Differ. Equations 267, No. 12, 7047-7063 (2019). MSC: 35Q30 35A09 35B44 76N99 PDF BibTeX XML Cite \textit{D. Bian} and \textit{J. Li}, J. Differ. Equations 267, No. 12, 7047--7063 (2019; Zbl 1428.35274) Full Text: DOI arXiv
Agélas, Léo A new path to the non blow-up of incompressible flows. (English) Zbl 1433.35214 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 6, 1503-1537 (2019). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 35Q31 35B44 76B03 86A10 PDF BibTeX XML Cite \textit{L. Agélas}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 6, 1503--1537 (2019; Zbl 1433.35214) Full Text: DOI
Jüngel, Ansgar; Leingang, Oliver Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. (English) Zbl 1432.35030 Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4755-4782 (2019). Reviewer: Alpár R. Mészáros (Durham) MSC: 35B44 35Q92 65L06 65M20 92C17 PDF BibTeX XML Cite \textit{A. Jüngel} and \textit{O. Leingang}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4755--4782 (2019; Zbl 1432.35030) Full Text: DOI
Kiselev, Alexander; Yang, Hang Analysis of a singular Boussinesq model. (English) Zbl 1428.35367 Res. Math. Sci. 6, No. 1, Paper No. 13, 16 p. (2019). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q35 76B03 35B65 35B44 PDF BibTeX XML Cite \textit{A. Kiselev} and \textit{H. Yang}, Res. Math. Sci. 6, No. 1, Paper No. 13, 16 p. (2019; Zbl 1428.35367) Full Text: DOI arXiv
Liu, Yang; Mu, Jia; Jiao, Yujuan A class of fourth order damped wave equations with arbitrary positive initial energy. (English) Zbl 1437.35110 Proc. Edinb. Math. Soc., II. Ser. 62, No. 1, 165-178 (2019). MSC: 35B44 35L35 35L76 PDF BibTeX XML Cite \textit{Y. Liu} et al., Proc. Edinb. Math. Soc., II. Ser. 62, No. 1, 165--178 (2019; Zbl 1437.35110) Full Text: DOI
Sulman, M.; Nguyen, T. A positivity preserving moving mesh finite element method for the Keller-Segel chemotaxis model. (English) Zbl 1422.65413 J. Sci. Comput. 80, No. 1, 649-666 (2019). MSC: 65N30 65M06 35B44 92C17 35Q82 65M50 PDF BibTeX XML Cite \textit{M. Sulman} and \textit{T. Nguyen}, J. Sci. Comput. 80, No. 1, 649--666 (2019; Zbl 1422.65413) Full Text: DOI
Shi, Qihong; Wang, Shu Klein-Gordon-Zakharov system in energy space: blow-up profile and subsonic limit. (English) Zbl 1416.35048 Math. Methods Appl. Sci. 42, No. 9, 3211-3221 (2019). MSC: 35B44 35Q70 35L70 35L52 PDF BibTeX XML Cite \textit{Q. Shi} and \textit{S. Wang}, Math. Methods Appl. Sci. 42, No. 9, 3211--3221 (2019; Zbl 1416.35048) Full Text: DOI
Luo, Yongbing; Yang, Yanbing; Ahmed, Md Salik; Yu, Tao; Zhang, Mingyou; Wang, Ligang; Xu, Huichao Global existence and blow up of the solution for nonlinear Klein-Gordon equation with general power-type nonlinearities at three initial energy levels. (English) Zbl 1430.35158 Appl. Numer. Math. 141, 102-123 (2019). Reviewer: Denis Borisov (Ufa) MSC: 35L71 35B44 35L15 PDF BibTeX XML Cite \textit{Y. Luo} et al., Appl. Numer. Math. 141, 102--123 (2019; Zbl 1430.35158) Full Text: DOI
Wang, Xiaohuan Blow-up solutions of the stochastic nonlocal heat equations. (English) Zbl 1415.60080 Stoch. Dyn. 19, No. 2, Article ID 1950014, 12 p. (2019). MSC: 60H15 60H40 60H05 PDF BibTeX XML Cite \textit{X. Wang}, Stoch. Dyn. 19, No. 2, Article ID 1950014, 12 p. (2019; Zbl 1415.60080) Full Text: DOI
Oh, Tadahiro; Okamoto, Mamoru; Pocovnicu, Oana On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. (English) Zbl 07069007 Discrete Contin. Dyn. Syst. 39, No. 6, 3479-3520 (2019). Reviewer: Igor I. Skrypnik (Donetsk) MSC: 35Q55 35B44 35B40 35A01 35A02 60H30 PDF BibTeX XML Cite \textit{T. Oh} et al., Discrete Contin. Dyn. Syst. 39, No. 6, 3479--3520 (2019; Zbl 07069007) Full Text: DOI arXiv
Zheng, Pan; Mu, Chunlai; Hu, Xuegang; Wang, Liangchen Finite-time blow-up in a quasilinear chemotaxis system with an external signal consumption. (English) Zbl 1415.35148 Topol. Methods Nonlinear Anal. 53, No. 1, 25-41 (2019). Reviewer: E. Ahmed (Mansoura) MSC: 35K40 35K55 35Q92 35B35 35B40 92C17 PDF BibTeX XML Cite \textit{P. Zheng} et al., Topol. Methods Nonlinear Anal. 53, No. 1, 25--41 (2019; Zbl 1415.35148) Full Text: DOI Euclid
Akagi, Goro; Melchionna, Stefano Porous medium equation with a blow-up nonlinearity and a non-decreasing constraint. (English) Zbl 07061137 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 2, Paper No. 10, 33 p. (2019). MSC: 35M86 49J27 58E30 PDF BibTeX XML Cite \textit{G. Akagi} and \textit{S. Melchionna}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 2, Paper No. 10, 33 p. (2019; Zbl 07061137) Full Text: DOI arXiv
Parshad, Rana D.; Yao, Guangming; Li, Wen Another mechanism to control invasive species and population explosion: “ecological” damping continued. (English) Zbl 1416.35281 Differ. Equ. Dyn. Syst. 27, No. 1-3, 249-276 (2019). MSC: 35Q92 35B44 35K57 65M70 92D25 PDF BibTeX XML Cite \textit{R. D. Parshad} et al., Differ. Equ. Dyn. Syst. 27, No. 1--3, 249--276 (2019; Zbl 1416.35281) Full Text: DOI
Kurokiba, Masaki; Ogawa, Takayoshi Finite-time blow-up for solutions to a degenerate drift-diffusion equation for a fast-diffusion case. (English) Zbl 1411.35153 Nonlinearity 32, No. 6, 2073-2093 (2019). MSC: 35K55 35K65 35K59 PDF BibTeX XML Cite \textit{M. Kurokiba} and \textit{T. Ogawa}, Nonlinearity 32, No. 6, 2073--2093 (2019; Zbl 1411.35153) Full Text: DOI
Xu, Guangyu; Mu, Chunlai; Yi, Hong On potential wells to a semilinear hyperbolic equation with damping and conical singularity. (English) Zbl 1439.35342 J. Math. Anal. Appl. 476, No. 2, 278-301 (2019). MSC: 35L71 35L20 35R01 PDF BibTeX XML Cite \textit{G. Xu} et al., J. Math. Anal. Appl. 476, No. 2, 278--301 (2019; Zbl 1439.35342) Full Text: DOI
Maekawa, Yasunori; Miura, Hideyuki; Prange, Christophe Local energy weak solutions for the Navier-Stokes equations in the half-space. (English) Zbl 1421.35250 Commun. Math. Phys. 367, No. 2, 517-580 (2019). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35Q30 76D05 35D30 35B44 PDF BibTeX XML Cite \textit{Y. Maekawa} et al., Commun. Math. Phys. 367, No. 2, 517--580 (2019; Zbl 1421.35250) Full Text: DOI arXiv
Huh, Hyungjin; Pelinovsky, Dmitry E. Nonexistence of self-similar blowup for the nonlinear Dirac equations in \((1+1)\) dimensions. (English) Zbl 1417.35154 Appl. Math. Lett. 92, 176-183 (2019). MSC: 35Q41 35B44 35C06 35A01 PDF BibTeX XML Cite \textit{H. Huh} and \textit{D. E. Pelinovsky}, Appl. Math. Lett. 92, 176--183 (2019; Zbl 1417.35154) Full Text: DOI arXiv
Hong, Younghun; Kwon, Soonsik; Yoon, Haewon Global existence versus finite time blowup dichotomy for the system of nonlinear Schrödinger equations. (English. French summary) Zbl 1417.35178 J. Math. Pures Appl. (9) 125, 283-320 (2019). MSC: 35Q55 35L52 35J47 47J20 49J40 49S05 35B44 PDF BibTeX XML Cite \textit{Y. Hong} et al., J. Math. Pures Appl. (9) 125, 283--320 (2019; Zbl 1417.35178) Full Text: DOI arXiv
Antonelli, Paolo; Arbunich, Jack; Sparber, Christof Regularizing nonlinear Schrödinger equations through partial off-axis variations. (English) Zbl 1414.35186 SIAM J. Math. Anal. 51, No. 1, 110-130 (2019). Reviewer: Valery V. Karachik (Chelyabinsk) MSC: 35Q41 35C20 78A60 35B44 PDF BibTeX XML Cite \textit{P. Antonelli} et al., SIAM J. Math. Anal. 51, No. 1, 110--130 (2019; Zbl 1414.35186) Full Text: DOI
Cazenave, Thierry; Martel, Yvan; Zhao, Lifeng Finite-time blowup for a Schrödinger equation with nonlinear source term. (English) Zbl 1404.35405 Discrete Contin. Dyn. Syst. 39, No. 2, 1171-1183 (2019). MSC: 35Q55 35B44 35B40 PDF BibTeX XML Cite \textit{T. Cazenave} et al., Discrete Contin. Dyn. Syst. 39, No. 2, 1171--1183 (2019; Zbl 1404.35405) Full Text: DOI
Ncube, Israel Finite time blow-up in a mathematical model of sub-atomic particle oscillations. (English) Zbl 07161222 Far East J. Dyn. Syst. 30, No. 3, 77-101 (2018). Reviewer: Klaus R. Schneider (Berlin) MSC: 34C15 34C25 34C11 PDF BibTeX XML Cite \textit{I. Ncube}, Far East J. Dyn. Syst. 30, No. 3, 77--101 (2018; Zbl 07161222) Full Text: DOI
Adou, K. Achille; Touré, K. Augustin; Coulibaly, A. Numerical study of estimating the blow-up time of positive solutions of semilinear heat equations. (English) Zbl 1443.65171 Far East J. Appl. Math. 100, No. 4, 291-308 (2018). MSC: 65M20 65M12 35B44 35K05 35K20 35K58 PDF BibTeX XML Cite \textit{K. A. Adou} et al., Far East J. Appl. Math. 100, No. 4, 291--308 (2018; Zbl 1443.65171) Full Text: DOI
Yang, Yanbing; Lian, Wei; Huang, Shaobin; Xu, Runzhang Finite time blow up of solutions for nonlinear wave equation with general nonlinearity for arbitrarily positive initial energy. (Chinese. English summary) Zbl 1438.35078 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 6, 1239-1244 (2018). MSC: 35B44 35L05 35L20 PDF BibTeX XML Cite \textit{Y. Yang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 6, 1239--1244 (2018; Zbl 1438.35078)
Okposo, Newton; Willie, Robert Well-posedness, blow-up dynamics and controllability of the classical chemotaxis model. (English) Zbl 1423.35048 Adv. Pure Appl. Math. 10, No. 2, 93-123 (2019). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35B44 35B20 35B40 35B65 92C17 35K51 35K59 93B05 PDF BibTeX XML Cite \textit{N. Okposo} and \textit{R. Willie}, Adv. Pure Appl. Math. 10, No. 2, 93--123 (2018; Zbl 1423.35048) Full Text: DOI
Santini, P. M. The periodic Cauchy problem for PT-symmetric NLS. I: The first appearance of rogue waves, regular behavior or blow up at finite times. (English) Zbl 1411.35244 J. Phys. A, Math. Theor. 51, No. 49, Article ID 495207, 21 p. (2018). MSC: 35Q55 81R05 35G25 35C20 76L05 35B44 PDF BibTeX XML Cite \textit{P. M. Santini}, J. Phys. A, Math. Theor. 51, No. 49, Article ID 495207, 21 p. (2018; Zbl 1411.35244) Full Text: DOI
Bressan, Alberto; Chen, Geng; Zhang, Qingtian On finite time BV blow-up for the p-system. (English) Zbl 1418.35042 Commun. Partial Differ. Equations 43, No. 8, 1242-1280 (2018). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35B44 35L65 35B35 35L67 PDF BibTeX XML Cite \textit{A. Bressan} et al., Commun. Partial Differ. Equations 43, No. 8, 1242--1280 (2018; Zbl 1418.35042) Full Text: DOI arXiv
Pei, Jinxian Nonexistence of solutions for a coupled parabolic systems with source terms. (Chinese. English summary) Zbl 1424.35216 J. North Univ. China, Nat. Sci. 39, No. 3, 255-259 (2018). MSC: 35K55 35B44 PDF BibTeX XML Cite \textit{J. Pei}, J. North Univ. China, Nat. Sci. 39, No. 3, 255--259 (2018; Zbl 1424.35216) Full Text: DOI
Xu, Guangyu Global existence, finite time blow-up and vacuum isolating phenomena for semilinear parabolic equation with conical degeneration. (English) Zbl 1406.35164 Taiwanese J. Math. 22, No. 6, 1479-1508 (2018). MSC: 35K61 35B44 35K10 35K55 35D30 PDF BibTeX XML Cite \textit{G. Xu}, Taiwanese J. Math. 22, No. 6, 1479--1508 (2018; Zbl 1406.35164) Full Text: DOI Euclid
Farah, Luiz; Pigott, Brian Nonlinear profile decomposition and the concentration phenomenon for supercritical generalized KdV equations. (English) Zbl 1410.35167 Indiana Univ. Math. J. 67, No. 5, 1857-1892 (2018). MSC: 35Q53 35B44 PDF BibTeX XML Cite \textit{L. Farah} and \textit{B. Pigott}, Indiana Univ. Math. J. 67, No. 5, 1857--1892 (2018; Zbl 1410.35167) Full Text: DOI
Korpusov, Maxim O.; Ovchinnikov, Alexey V.; Panin, Alexander A. Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field. (English) Zbl 1405.35009 Math. Methods Appl. Sci. 41, No. 17, 8070-8099 (2018). MSC: 35B44 35B33 35G20 35Q60 PDF BibTeX XML Cite \textit{M. O. Korpusov} et al., Math. Methods Appl. Sci. 41, No. 17, 8070--8099 (2018; Zbl 1405.35009) Full Text: DOI
Gao, Yu; Liu, Jian-Guo The modified Camassa-Holm equation in Lagrangian coordinates. (English) Zbl 1404.35105 Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2545-2592 (2018). MSC: 35G25 35B44 35D30 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{J.-G. Liu}, Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2545--2592 (2018; Zbl 1404.35105) Full Text: DOI arXiv
Shomberg, Joseph L. Exponential decay results for semilinear parabolic PDE with \(C^0\) potentials: a “mean value” approach. (English) Zbl 1401.35197 Differ. Equ. Dyn. Syst. 26, No. 4, 355-370 (2018). MSC: 35K58 35B45 35B40 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Differ. Equ. Dyn. Syst. 26, No. 4, 355--370 (2018; Zbl 1401.35197) Full Text: DOI arXiv
Korpusov, M. O. Solution blowup for nonlinear equations of the Khokhlov-Zabolotskaya type. (English. Russian original) Zbl 1402.35052 Theor. Math. Phys. 194, No. 3, 347-359 (2018); translation from Teor. Mat. Fiz. 194, No. 3, 403-417 (2018). MSC: 35B44 35L71 PDF BibTeX XML Cite \textit{M. O. Korpusov}, Theor. Math. Phys. 194, No. 3, 347--359 (2018; Zbl 1402.35052); translation from Teor. Mat. Fiz. 194, No. 3, 403--417 (2018) Full Text: DOI
Li, Jiaojiao; Ma, Li Finite time blowup and global solutions of Euler type equations in matrix geometry. (English) Zbl 1398.35154 J. Math. Phys. 59, No. 7, 072205, 9 p. (2018). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q31 35B44 35A01 76N10 80A10 PDF BibTeX XML Cite \textit{J. Li} and \textit{L. Ma}, J. Math. Phys. 59, No. 7, 072205, 9 p. (2018; Zbl 1398.35154) Full Text: DOI
Korpusov, M. O. Solution blow-up in a nonlinear system of equations with positive energy in field theory. (English. Russian original) Zbl 1395.35044 Comput. Math. Math. Phys. 58, No. 3, 425-436 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 3, 447-458 (2018). MSC: 35B44 35L53 35L71 35Q60 PDF BibTeX XML Cite \textit{M. O. Korpusov}, Comput. Math. Math. Phys. 58, No. 3, 425--436 (2018; Zbl 1395.35044); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 3, 447--458 (2018) Full Text: DOI
Li, Xiaoliang; Liu, Baiyu Finite time blow-up and global existence for the nonlocal complex Ginzburg-Landau equation. (English) Zbl 1394.35487 J. Math. Anal. Appl. 466, No. 1, 961-985 (2018). MSC: 35Q56 35B44 35A01 PDF BibTeX XML Cite \textit{X. Li} and \textit{B. Liu}, J. Math. Anal. Appl. 466, No. 1, 961--985 (2018; Zbl 1394.35487) Full Text: DOI
Tayachi, Slim; Weissler, Fred B. The nonlinear heat equation involving highly singular initial values and new blowup and life span results. (English) Zbl 1391.35210 J. Elliptic Parabol. Equ. 4, No. 1, 141-176 (2018). MSC: 35K55 35A01 35B44 35K57 35C15 PDF BibTeX XML Cite \textit{S. Tayachi} and \textit{F. B. Weissler}, J. Elliptic Parabol. Equ. 4, No. 1, 141--176 (2018; Zbl 1391.35210) Full Text: DOI arXiv
Laurençot, Philippe; Walker, Christoph Finite time singularity in a MEMS model revisited. (English) Zbl 06865177 Z. Anal. Anwend. 37, No. 2, 209-219 (2018). MSC: 35M30 35R35 35B44 35Q74 PDF BibTeX XML Cite \textit{P. Laurençot} and \textit{C. Walker}, Z. Anal. Anwend. 37, No. 2, 209--219 (2018; Zbl 06865177) Full Text: DOI
Kyza, Irene; Metcalfe, Stephen; Wihler, Thomas P. \(hp\)-adaptive Galerkin time stepping methods for nonlinear initial value problems. (English) Zbl 1398.65110 J. Sci. Comput. 75, No. 1, 111-127 (2018). MSC: 65J08 65L05 65L60 PDF BibTeX XML Cite \textit{I. Kyza} et al., J. Sci. Comput. 75, No. 1, 111--127 (2018; Zbl 1398.65110) Full Text: DOI
Li, Lei; Liu, Jian-Guo; Wang, Lizhen Cauchy problems for Keller-Segel type time-space fractional diffusion equation. (English) Zbl 1427.35329 J. Differ. Equations 265, No. 3, 1044-1096 (2018). MSC: 35R11 26A33 35A08 35B44 PDF BibTeX XML Cite \textit{L. Li} et al., J. Differ. Equations 265, No. 3, 1044--1096 (2018; Zbl 1427.35329) Full Text: DOI
Dimova, Milena; Kolkovska, Natalia; Kutev, Nikolai Blow up of solutions to ordinary differential equations arising in nonlinear dispersive problems. (English) Zbl 1400.34048 Electron. J. Differ. Equ. 2018, Paper No. 68, 16 p. (2018). Reviewer: Adeleke Timothy Ademola (Ile-Ife) MSC: 34C11 35B44 34A40 35A24 35L75 PDF BibTeX XML Cite \textit{M. Dimova} et al., Electron. J. Differ. Equ. 2018, Paper No. 68, 16 p. (2018; Zbl 1400.34048) Full Text: Link
Holm, Bärbel; Wihler, Thomas P. Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up. (English) Zbl 1453.65118 Numer. Math. 138, No. 3, 767-799 (2018). Reviewer: Mikhail Yu. Kokurin (Yoshkar-Ola) MSC: 65J08 65L05 65L60 PDF BibTeX XML Cite \textit{B. Holm} and \textit{T. P. Wihler}, Numer. Math. 138, No. 3, 767--799 (2018; Zbl 1453.65118) Full Text: DOI
Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. (English) Zbl 1394.35253 J. Differ. Equations 264, No. 10, 6459-6485 (2018). Reviewer: Christian Stinner (Darmstadt) MSC: 35K65 35B44 92C17 35Q92 PDF BibTeX XML Cite \textit{T. Hashira} et al., J. Differ. Equations 264, No. 10, 6459--6485 (2018; Zbl 1394.35253) Full Text: DOI
Cho, Chien-Hong; Liu, Chun-Yi Convergence analysis for a three-level finite difference scheme of a second order nonlinear ODE blow-up problem. (English) Zbl 1383.65085 East Asian J. Appl. Math. 7, No. 4, 679-696 (2018). MSC: 65L12 65L05 65L20 34A34 65L50 PDF BibTeX XML Cite \textit{C.-H. Cho} and \textit{C.-Y. Liu}, East Asian J. Appl. Math. 7, No. 4, 679--696 (2018; Zbl 1383.65085) Full Text: DOI
Csobo, Elek; Genoud, François Minimal mass blow-up solutions for the \(L^2\) critical NLS with inverse-square potential. (English) Zbl 1383.35207 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 168, 110-129 (2018). MSC: 35Q55 35B44 35C06 PDF BibTeX XML Cite \textit{E. Csobo} and \textit{F. Genoud}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 168, 110--129 (2018; Zbl 1383.35207) Full Text: DOI
Laurençot, Philippe; Walker, Christoph Some singular equations modeling MEMS. (English) Zbl 07250922 Bull. Am. Math. Soc., New Ser. 54, No. 3, 437-479 (2017). Reviewer: Ramón Quintanilla De Latorre (Barcelona) MSC: 35Q74 35R35 35M33 35K91 35B44 35B65 78A30 74F15 74B20 74K10 35J05 35A01 35A02 PDF BibTeX XML Cite \textit{P. Laurençot} and \textit{C. Walker}, Bull. Am. Math. Soc., New Ser. 54, No. 3, 437--479 (2017; Zbl 07250922) Full Text: DOI
Destyl, Edès; Nuiro, Silvere Paul; Poullet, Pascal Critical blowup in coupled parity-time-symmetric nonlinear Schrödinger equations. (English) Zbl 1427.78018 AIMS Math. 2, No. 1, 195-206 (2017). MSC: 78A60 35Q55 35B44 35Q41 PDF BibTeX XML Cite \textit{E. Destyl} et al., AIMS Math. 2, No. 1, 195--206 (2017; Zbl 1427.78018) Full Text: DOI
Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Agrawal, Rashmi; Upadhyay, Ranjit Kumar Finite time blow-up in a delayed diffusive population model with competitive interference. (English) Zbl 1401.35185 Int. J. Nonlinear Sci. Numer. Simul. 18, No. 5, 435-450 (2017). MSC: 35K57 35Q92 35B36 92D25 92D40 35B44 PDF BibTeX XML Cite \textit{R. D. Parshad} et al., Int. J. Nonlinear Sci. Numer. Simul. 18, No. 5, 435--450 (2017; Zbl 1401.35185) Full Text: DOI
Rottschäfer, V.; Tzou, J. C.; Ward, M. J. Transition to blow-up in a reaction-diffusion model with localized spike solutions. (English) Zbl 1387.35338 Eur. J. Appl. Math. 28, No. 6, 1015-1055 (2017). MSC: 35K51 35K58 35B44 35B25 PDF BibTeX XML Cite \textit{V. Rottschäfer} et al., Eur. J. Appl. Math. 28, No. 6, 1015--1055 (2017; Zbl 1387.35338) Full Text: DOI
Nguyen, Van Tien; Zaag, Hatem Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation. (English. French summary) Zbl 1395.35125 Ann. Sci. Éc. Norm. Supér. (4) 50, No. 5, 1241-1282 (2017). Reviewer: Joseph Shomberg (Providence) MSC: 35K58 35K55 35B40 35B44 PDF BibTeX XML Cite \textit{V. T. Nguyen} and \textit{H. Zaag}, Ann. Sci. Éc. Norm. Supér. (4) 50, No. 5, 1241--1282 (2017; Zbl 1395.35125) Full Text: DOI Link arXiv
Fujiwara, Kazumasa; Ozawa, Tohru Lifespan of strong solutions to the periodic nonlinear Schrödinger equation without gauge invariance. (English) Zbl 1381.35160 J. Evol. Equ. 17, No. 3, 1023-1030 (2017). MSC: 35Q55 35D35 35B44 PDF BibTeX XML Cite \textit{K. Fujiwara} and \textit{T. Ozawa}, J. Evol. Equ. 17, No. 3, 1023--1030 (2017; Zbl 1381.35160) Full Text: DOI