Bai, Yong; Paik, Jeom Finite element methods. Engineering applications (to appear). (English) Zbl 07279533 Ship and Offshore Structural Mechanics 1. Hackensack, NJ: World Scientific (ISBN 978-981-12-1904-7/hbk). 300 p. (2023). MSC: 65-02 65M60 65M22 74S05 74Kxx 35Q74 PDF BibTeX XML Cite \textit{Y. Bai} and \textit{J. Paik}, Finite element methods. Engineering applications (to appear). Hackensack, NJ: World Scientific (2023; Zbl 07279533) Full Text: DOI OpenURL
Futai, Kouta; Kolbe, Niklas; Notsu, Hirofumi; Suzuki, Tasuku A mass-preserving two-step Lagrange-Galerkin scheme for convection-diffusion problems. (English) Zbl 07550030 J. Sci. Comput. 92, No. 2, Paper No. 37, 33 p. (2022). MSC: 65M12 65M25 65M60 65M50 PDF BibTeX XML Cite \textit{K. Futai} et al., J. Sci. Comput. 92, No. 2, Paper No. 37, 33 p. (2022; Zbl 07550030) Full Text: DOI OpenURL
Zhou, Qin; Feng, Minfu Analysis of a full discretization for a fractional/normal diffusion equation with rough Dirichlet boundary data. (English) Zbl 07549613 J. Sci. Comput. 92, No. 1, Paper No. 25, 17 p. (2022). MSC: 65Mxx 35Kxx 35Rxx PDF BibTeX XML Cite \textit{Q. Zhou} and \textit{M. Feng}, J. Sci. Comput. 92, No. 1, Paper No. 25, 17 p. (2022; Zbl 07549613) Full Text: DOI OpenURL
Kwak, Soobin; Lee, Hyun Geun; Li, Yibao; Yang, Junxiang; Lee, Chaeyoung; Kim, Hyundong; Kang, Seungyoon; Kim, Junseok Motion by mean curvature with constraints using a modified Allen-Cahn equation. (English) Zbl 07549328 J. Sci. Comput. 92, No. 1, Paper No. 16, 16 p. (2022). MSC: 65Mxx 35Kxx 35Qxx PDF BibTeX XML Cite \textit{S. Kwak} et al., J. Sci. Comput. 92, No. 1, Paper No. 16, 16 p. (2022; Zbl 07549328) Full Text: DOI OpenURL
De Nitti, Nicola; Fischer, Julian Sharp criteria for the waiting time phenomenon in solutions to the thin-film equation. (English) Zbl 07548838 Commun. Partial Differ. Equations 47, No. 7, 1394-1434 (2022). MSC: 35K30 35K59 35K65 35Q35 35R35 76A20 76D08 PDF BibTeX XML Cite \textit{N. De Nitti} and \textit{J. Fischer}, Commun. Partial Differ. Equations 47, No. 7, 1394--1434 (2022; Zbl 07548838) Full Text: DOI OpenURL
Rybakov, Mikhail; Shkatov, Dmitry Complexity of finite-variable fragments of propositional temporal and modal logics of computation. (English) Zbl 07547827 Theor. Comput. Sci. 925, 45-60 (2022). MSC: 03B70 03B44 03B45 68Q25 PDF BibTeX XML Cite \textit{M. Rybakov} and \textit{D. Shkatov}, Theor. Comput. Sci. 925, 45--60 (2022; Zbl 07547827) Full Text: DOI OpenURL
Sarkar, Md Abu Hanif Finite extinction for a doubly nonlinear parabolic equation of fast diffusion type. (English) Zbl 07547348 Arab J. Math. Sci. 28, No. 1, 44-60 (2022). MSC: 35B51 35B65 35D30 35K61 PDF BibTeX XML Cite \textit{M. A. H. Sarkar}, Arab J. Math. Sci. 28, No. 1, 44--60 (2022; Zbl 07547348) Full Text: DOI OpenURL
Razmjooei, Hamid; Palli, Gianluca; Abdi, Elahe Continuous finite-time extended state observer design for electro-hydraulic systems. (English) Zbl 07547319 J. Franklin Inst. 359, No. 10, 5036-5055 (2022). MSC: 93B53 93B12 93D40 PDF BibTeX XML Cite \textit{H. Razmjooei} et al., J. Franklin Inst. 359, No. 10, 5036--5055 (2022; Zbl 07547319) Full Text: DOI OpenURL
Zhou, Bing; Yang, Liang; Wang, Chengdong; Lai, Guanyu; Chen, Yong Adaptive finite-time tracking control of robot manipulators with multiple uncertainties based on a low-cost neural approximator. (English) Zbl 07547314 J. Franklin Inst. 359, No. 10, 4938-4958 (2022). MSC: 93C40 93D40 93C85 PDF BibTeX XML Cite \textit{B. Zhou} et al., J. Franklin Inst. 359, No. 10, 4938--4958 (2022; Zbl 07547314) Full Text: DOI OpenURL
Chen, Qiaoyu; Tong, Dongbing; Zhou, Wuneng Finite-time stochastic boundedness for Markovian jumping systems via the sliding mode control. (English) Zbl 07547303 J. Franklin Inst. 359, No. 10, 4678-4698 (2022). MSC: 93B12 93E03 93B03 PDF BibTeX XML Cite \textit{Q. Chen} et al., J. Franklin Inst. 359, No. 10, 4678--4698 (2022; Zbl 07547303) Full Text: DOI OpenURL
Salahuddin; Sharma, Navin Kumar Anisotropic cosmological model involving null radiation flow and magnetic field. (English) Zbl 07546767 Palest. J. Math. 11, No. 1, 477-484 (2022). MSC: 20M99 13F10 13A15 13M05 PDF BibTeX XML Cite \textit{Salahuddin} and \textit{N. K. Sharma}, Palest. J. Math. 11, No. 1, 477--484 (2022; Zbl 07546767) Full Text: Link OpenURL
Zamart, Chantapish; Botmart, Thongchai; Weera, Wajaree; Charoensin, Suphachai New delay-dependent conditions for finite-time extended dissipativity based non-fragile feedback control for neural networks with mixed interval time-varying delays. (English) Zbl 07545926 Math. Comput. Simul. 201, 684-713 (2022). MSC: 93-XX 92-XX PDF BibTeX XML Cite \textit{C. Zamart} et al., Math. Comput. Simul. 201, 684--713 (2022; Zbl 07545926) Full Text: DOI OpenURL
Zheng, Xiangcheng; Wang, Hong Discretization and analysis of an optimal control of a variable-order time-fractional diffusion equation with pointwise constraints. (English) Zbl 07545417 J. Sci. Comput. 91, No. 2, Paper No. 56, 22 p. (2022). MSC: 65Mxx 49Mxx 35Kxx PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, J. Sci. Comput. 91, No. 2, Paper No. 56, 22 p. (2022; Zbl 07545417) Full Text: DOI OpenURL
Jia, Jinhong; Wang, Hong; Zheng, Xiangcheng Numerical analysis of a fast finite element method for a hidden-memory variable-order time-fractional diffusion equation. (English) Zbl 07545415 J. Sci. Comput. 91, No. 2, Paper No. 54, 17 p. (2022). MSC: 65-XX 35R11 65M15 65M60 PDF BibTeX XML Cite \textit{J. Jia} et al., J. Sci. Comput. 91, No. 2, Paper No. 54, 17 p. (2022; Zbl 07545415) Full Text: DOI OpenURL
Sun, Haibin; Cui, Yahui; Hou, Linlin; Shi, Kaibo Adaptive finite-time control for cyber-physical systems with injection and deception attacks. (English) Zbl 07545349 Appl. Math. Comput. 430, Article ID 127316, 17 p. (2022). MSC: 93Cxx 93Bxx 93Dxx PDF BibTeX XML Cite \textit{H. Sun} et al., Appl. Math. Comput. 430, Article ID 127316, 17 p. (2022; Zbl 07545349) Full Text: DOI OpenURL
Willmot, Gordon E.; Woo, Jae-Kyung Remarks on a generalized inverse Gaussian type integral with applications. (Remarks on a generalized inverse Ggaussian type integral with applications.) (English) Zbl 07545342 Appl. Math. Comput. 430, Article ID 127302, 11 p. (2022). MSC: 62Pxx 62Exx 91Bxx PDF BibTeX XML Cite \textit{G. E. Willmot} and \textit{J.-K. Woo}, Appl. Math. Comput. 430, Article ID 127302, 11 p. (2022; Zbl 07545342) Full Text: DOI OpenURL
Cui, Qian; Li, Lulu; Lu, Jianquan; Alofi, Abdulaziz Finite-time synchronization of complex dynamical networks under delayed impulsive effects. (English) Zbl 07545334 Appl. Math. Comput. 430, Article ID 127290, 13 p. (2022). MSC: 93Cxx 93Dxx 93Bxx PDF BibTeX XML Cite \textit{Q. Cui} et al., Appl. Math. Comput. 430, Article ID 127290, 13 p. (2022; Zbl 07545334) Full Text: DOI OpenURL
Hussein, S. O.; Dyhoum, Taysir E. Solutions for non-homogeneous wave equations subject to unusual and Neumann boundary conditions. (English) Zbl 07545329 Appl. Math. Comput. 430, Article ID 127285, 12 p. (2022). MSC: 65Mxx 35Rxx 93Cxx PDF BibTeX XML Cite \textit{S. O. Hussein} and \textit{T. E. Dyhoum}, Appl. Math. Comput. 430, Article ID 127285, 12 p. (2022; Zbl 07545329) Full Text: DOI OpenURL
Cho, Junhyun; Kim, Yejin; Lee, Sungchul An accurate and stable numerical method for option hedge parameters. (English) Zbl 07545326 Appl. Math. Comput. 430, Article ID 127276, 11 p. (2022). MSC: 91Gxx 65Mxx 35Qxx PDF BibTeX XML Cite \textit{J. Cho} et al., Appl. Math. Comput. 430, Article ID 127276, 11 p. (2022; Zbl 07545326) Full Text: DOI OpenURL
Sun, Shaoxin; Dai, Xin; Wang, Zhiliang; Zhou, Yu; Xie, Xiangpeng Robust finite-time \(H_\infty\) control for Itô stochastic semi-Markovian jump systems with delays. (English) Zbl 07545299 Appl. Math. Comput. 430, Article ID 127181, 26 p. (2022). MSC: 93Bxx 93Exx 93Cxx PDF BibTeX XML Cite \textit{S. Sun} et al., Appl. Math. Comput. 430, Article ID 127181, 26 p. (2022; Zbl 07545299) Full Text: DOI OpenURL
Sun, Fenglong; Wang, Yutai; Yin, Hongjian Blow-up problems for a parabolic equation coupled with superlinear source and local linear boundary dissipation. (English) Zbl 07545064 J. Math. Anal. Appl. 514, No. 2, Article ID 126327, 17 p. (2022). MSC: 35B44 35K20 35K58 PDF BibTeX XML Cite \textit{F. Sun} et al., J. Math. Anal. Appl. 514, No. 2, Article ID 126327, 17 p. (2022; Zbl 07545064) Full Text: DOI OpenURL
Li, Huanrong; Wang, Dongmei Numerical analysis of energy-stable Crank-Nicolson finite difference schemes for the phase-field equation. (English) Zbl 07545044 J. Math. Anal. Appl. 514, No. 2, Article ID 126169, 20 p. (2022). MSC: 65Mxx 35Qxx 65Nxx PDF BibTeX XML Cite \textit{H. Li} and \textit{D. Wang}, J. Math. Anal. Appl. 514, No. 2, Article ID 126169, 20 p. (2022; Zbl 07545044) Full Text: DOI OpenURL
Wang, Siyang; Appelö, Daniel; Kreiss, Gunilla An energy-based summation-by-parts finite difference method for the wave equation in second order form. (English) Zbl 07544574 J. Sci. Comput. 91, No. 2, Paper No. 52, 22 p. (2022). MSC: 65Mxx 35Lxx 65Dxx PDF BibTeX XML Cite \textit{S. Wang} et al., J. Sci. Comput. 91, No. 2, Paper No. 52, 22 p. (2022; Zbl 07544574) Full Text: DOI OpenURL
Huang, Chaobao; Stynes, Martin A sharp \(\alpha\)-robust \(L^\infty (H^1)\) error bound for a time-fractional Allen-Cahn problem discretised by the Alikhanov \(L2-1_\sigma\) scheme and a standard FEM. (English) Zbl 07544565 J. Sci. Comput. 91, No. 2, Paper No. 43, 19 p. (2022). MSC: 65M60 65M12 35R11 PDF BibTeX XML Cite \textit{C. Huang} and \textit{M. Stynes}, J. Sci. Comput. 91, No. 2, Paper No. 43, 19 p. (2022; Zbl 07544565) Full Text: DOI OpenURL
Tu, Xinyu; Mu, Chunlai; Zheng, Pan On effects of the nonlinear signal production to the boundedness and finite-time blow-up in a flux-limited chemotaxis model. (English) Zbl 07544553 Math. Models Methods Appl. Sci. 32, No. 4, 647-711 (2022). MSC: 35B44 35K51 35K59 35K65 92C17 PDF BibTeX XML Cite \textit{X. Tu} et al., Math. Models Methods Appl. Sci. 32, No. 4, 647--711 (2022; Zbl 07544553) Full Text: DOI OpenURL
Yao, Jie; Hussain, Fazle Vortex reconnection and turbulence cascade. (English) Zbl 07544329 Moin, Parviz (ed.) et al., Annual review of fluid mechanics. Vol. 54. Palo Alto, CA: Annual Reviews. Annu. Rev. Fluid Mech. 54, 317-347 (2022). MSC: 76D17 76F02 76Q05 76-02 PDF BibTeX XML Cite \textit{J. Yao} and \textit{F. Hussain}, Annu. Rev. Fluid Mech. 54, 317--347 (2022; Zbl 07544329) Full Text: DOI OpenURL
Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V. A finite element scheme for the numerical solution of the Navier-Stokes/Biot coupled problem. (English) Zbl 07543679 Russ. J. Numer. Anal. Math. Model. 37, No. 3, 159-174 (2022). MSC: 65Mxx 76M10 65M12 74F10 76Z05 PDF BibTeX XML Cite \textit{A. Lozovskiy} et al., Russ. J. Numer. Anal. Math. Model. 37, No. 3, 159--174 (2022; Zbl 07543679) Full Text: DOI OpenURL
Lapin, Alexander Mesh scheme for a phase transition problem with time-fractional derivative. (English) Zbl 07543678 Russ. J. Numer. Anal. Math. Model. 37, No. 3, 149-158 (2022). MSC: 65Mxx 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{A. Lapin}, Russ. J. Numer. Anal. Math. Model. 37, No. 3, 149--158 (2022; Zbl 07543678) Full Text: DOI OpenURL
Sun, Jing; Deng, Weihua; Nie, Daxin Numerical approximations for the fractional Fokker-Planck equation with two-scale diffusion. (English) Zbl 07543422 J. Sci. Comput. 91, No. 2, Paper No. 34, 25 p. (2022). MSC: 65Mxx 35Rxx 65Nxx PDF BibTeX XML Cite \textit{J. Sun} et al., J. Sci. Comput. 91, No. 2, Paper No. 34, 25 p. (2022; Zbl 07543422) Full Text: DOI OpenURL
Li, Dongfang; She, Mianfu; Sun, Hai-wei; Yan, Xiaoqiang A novel discrete fractional Grönwall-type inequality and its application in pointwise-in-time error estimates. (English) Zbl 07543415 J. Sci. Comput. 91, No. 1, Paper No. 27, 26 p. (2022). MSC: 65M70 65M06 65N35 65M12 65M15 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{D. Li} et al., J. Sci. Comput. 91, No. 1, Paper No. 27, 26 p. (2022; Zbl 07543415) Full Text: DOI OpenURL
Strazzullo, Maria; Ballarin, Francesco; Rozza, Gianluigi POD-Galerkin model order reduction for parametrized nonlinear time-dependent optimal flow control: an application to shallow water equations. (English) Zbl 07542959 J. Numer. Math. 30, No. 1, 63-84 (2022). MSC: 65M60 49M41 76N99 PDF BibTeX XML Cite \textit{M. Strazzullo} et al., J. Numer. Math. 30, No. 1, 63--84 (2022; Zbl 07542959) Full Text: DOI OpenURL
Vedenyapin, V. V.; Adzhiev, S. Z.; Kazantseva, V. V. Boltzmann and Poincaré entropy, Boltzmann extremals, and Hamilton-Jacobi method for non-Hamiltonian situation. (English. Russian original) Zbl 07542521 J. Math. Sci., New York 260, No. 4, 434-455 (2022); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 1, 37-59 (2018). MSC: 82Cxx 37Jxx 70Hxx PDF BibTeX XML Cite \textit{V. V. Vedenyapin} et al., J. Math. Sci., New York 260, No. 4, 434--455 (2022; Zbl 07542521); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 1, 37--59 (2018) Full Text: DOI OpenURL
Bae, Hantaek; Granero-Belinchón, Rafael Singularity formation for the Serre-Green-Naghdi equations and applications to abcd-Boussinesq systems. (English) Zbl 07541971 Monatsh. Math. 198, No. 3, 503-516 (2022). MSC: 35Qxx 35B44 35Q35 35L67 35L55 35R35 PDF BibTeX XML Cite \textit{H. Bae} and \textit{R. Granero-Belinchón}, Monatsh. Math. 198, No. 3, 503--516 (2022; Zbl 07541971) Full Text: DOI OpenURL
Bhardwaj, Akanksha; Kumar, Alpesh; Tiwari, Awanish Kumar An RBF based finite difference method for the numerical approximation of multi-term nonlinear time fractional two dimensional diffusion-wave equation. (English) Zbl 07541694 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 84, 25 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{A. Bhardwaj} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 84, 25 p. (2022; Zbl 07541694) Full Text: DOI OpenURL
Li, Po-Wei The space-time generalized finite difference scheme for solving the nonlinear equal-width equation in the long-time simulation. (English) Zbl 07540969 Appl. Math. Lett. 132, Article ID 108181, 8 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{P.-W. Li}, Appl. Math. Lett. 132, Article ID 108181, 8 p. (2022; Zbl 07540969) Full Text: DOI OpenURL
Chatterjee, Krishnendu; Doyen, Laurent Graph planning with expected finite horizon. (English) Zbl 07540615 J. Comput. Syst. Sci. 129, 1-21 (2022). MSC: 68T20 60G40 68Q25 68R10 PDF BibTeX XML Cite \textit{K. Chatterjee} and \textit{L. Doyen}, J. Comput. Syst. Sci. 129, 1--21 (2022; Zbl 07540615) Full Text: DOI OpenURL
Schleuß, Julia; Smetana, Kathrin Optimal local approximation spaces for parabolic problems. (English) Zbl 07540476 Multiscale Model. Simul. 20, No. 1, 551-582 (2022). MSC: 65M60 65M12 65M15 65M55 PDF BibTeX XML Cite \textit{J. Schleuß} and \textit{K. Smetana}, Multiscale Model. Simul. 20, No. 1, 551--582 (2022; Zbl 07540476) Full Text: DOI OpenURL
Singh, Mehakpreet; Matsoukas, Themis; Ranade, Vivek; Walker, Gavin Discrete finite volume formulation for multidimensional fragmentation equation and its convergence analysis. (English) Zbl 07540382 J. Comput. Phys. 464, Article ID 111368, 16 p. (2022). MSC: 82Cxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{M. Singh} et al., J. Comput. Phys. 464, Article ID 111368, 16 p. (2022; Zbl 07540382) Full Text: DOI OpenURL
Li, Jichun; Zhu, Li Analysis and application of a spatial fourth-order finite difference scheme for the Ziolkowski’s PML model. (English) Zbl 07540377 J. Comput. Phys. 464, Article ID 111350, 19 p. (2022). MSC: 65Mxx 78Mxx 78Axx PDF BibTeX XML Cite \textit{J. Li} and \textit{L. Zhu}, J. Comput. Phys. 464, Article ID 111350, 19 p. (2022; Zbl 07540377) Full Text: DOI OpenURL
Sharan, Nek; Brady, Peter T.; Livescu, Daniel High-order dimensionally-split Cartesian embedded boundary method for non-dissipative schemes. (English) Zbl 07540374 J. Comput. Phys. 464, Article ID 111341, 33 p. (2022). MSC: 76Mxx 65Mxx 76Fxx PDF BibTeX XML Cite \textit{N. Sharan} et al., J. Comput. Phys. 464, Article ID 111341, 33 p. (2022; Zbl 07540374) Full Text: DOI OpenURL
Gabbard, James; Gillis, Thomas; Chatelain, Philippe; van Rees, Wim M. An immersed interface method for the 2D vorticity-velocity Navier-Stokes equations with multiple bodies. (English) Zbl 07540372 J. Comput. Phys. 464, Article ID 111339, 27 p. (2022). MSC: 76Mxx 65Mxx 76Dxx PDF BibTeX XML Cite \textit{J. Gabbard} et al., J. Comput. Phys. 464, Article ID 111339, 27 p. (2022; Zbl 07540372) Full Text: DOI OpenURL
Almeida, Luis; Perthame, Benoît; Ruan, Xinran An asymptotic preserving scheme for capturing concentrations in age-structured models arising in adaptive dynamics. (English) Zbl 07540368 J. Comput. Phys. 464, Article ID 111335, 26 p. (2022). MSC: 92Dxx 65Mxx 35Bxx PDF BibTeX XML Cite \textit{L. Almeida} et al., J. Comput. Phys. 464, Article ID 111335, 26 p. (2022; Zbl 07540368) Full Text: DOI OpenURL
Tan, Meiqi; Cheng, Juan; Shu, Chi-Wang Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations. (English) Zbl 07540358 J. Comput. Phys. 464, Article ID 111314, 25 p. (2022). MSC: 65Mxx 35Qxx 35Kxx PDF BibTeX XML Cite \textit{M. Tan} et al., J. Comput. Phys. 464, Article ID 111314, 25 p. (2022; Zbl 07540358) Full Text: DOI OpenURL
Leer, M.; Pettit, M. W. A.; Lipkowicz, J. T.; Domingo, P.; Vervisch, L.; Kempf, A. M. A conservative eulerian-Lagrangian decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers. (English) Zbl 07540347 J. Comput. Phys. 464, Article ID 111216, 26 p. (2022). MSC: 76Fxx 76Mxx 65Mxx PDF BibTeX XML Cite \textit{M. Leer} et al., J. Comput. Phys. 464, Article ID 111216, 26 p. (2022; Zbl 07540347) Full Text: DOI OpenURL
Nikl, Jan; Kuchařík, Milan; Weber, Stefan High-order curvilinear finite element magneto-hydrodynamics. I: A conservative Lagrangian scheme. (English) Zbl 07540343 J. Comput. Phys. 464, Article ID 111158, 28 p. (2022). MSC: 76Mxx 65Nxx 65Mxx PDF BibTeX XML Cite \textit{J. Nikl} et al., J. Comput. Phys. 464, Article ID 111158, 28 p. (2022; Zbl 07540343) Full Text: DOI OpenURL
Li, Lili; She, Mianfu; Niu, Yuanling Corrigendum to: “Fractional Crank-Nicolson-Galerkin finite element methods for nonlinear time fractional parabolic problems with time delay”. (English) Zbl 07539840 J. Funct. Spaces 2022, Article ID 9820258, 10 p. (2022). MSC: 65M60 65M06 65N30 65M15 35K55 35R07 35R11 PDF BibTeX XML Cite \textit{L. Li} et al., J. Funct. Spaces 2022, Article ID 9820258, 10 p. (2022; Zbl 07539840) Full Text: DOI OpenURL
Bongarti, Marcelo; Lasiecka, Irena; Rodrigues, José H. Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity. (English) Zbl 07539671 Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1355-1376 (2022). MSC: 35L35 35L76 93D15 PDF BibTeX XML Cite \textit{M. Bongarti} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1355--1376 (2022; Zbl 07539671) Full Text: DOI OpenURL
Jana, Debaldev; Samanta, G. P.; Mondal, Ashok; Mondal, Sudeshna; Pal, A. K.; Manna, Debasis Explosive tritrophic food chain model with herd behaviour of prey and finite time blow-up of the top predator. (English) Zbl 07539529 Int. J. Dyn. Syst. Differ. Equ. 12, No. 1, 36-56 (2022). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{D. Jana} et al., Int. J. Dyn. Syst. Differ. Equ. 12, No. 1, 36--56 (2022; Zbl 07539529) Full Text: DOI OpenURL
Xun, Baoyin; Yuen, Kam C.; Wang, Kaiyong The finite-time ruin probability of a risk model with a general counting process and stochastic return. (English) Zbl 07538978 J. Ind. Manag. Optim. 18, No. 3, 1541-1556 (2022). MSC: 62P05 62E10 60F05 PDF BibTeX XML Cite \textit{B. Xun} et al., J. Ind. Manag. Optim. 18, No. 3, 1541--1556 (2022; Zbl 07538978) Full Text: DOI OpenURL
Du, Yu; Zhang, Jiwei Numerical solution of a one-dimensional nonlocal Helmholtz equation by perfectly matched layers. (English) Zbl 07538555 Numer. Math., Theory Methods Appl. 15, No. 2, 387-414 (2022). MSC: 49M25 65N22 65N06 65R20 82C21 46N40 45A05 PDF BibTeX XML Cite \textit{Y. Du} and \textit{J. Zhang}, Numer. Math., Theory Methods Appl. 15, No. 2, 387--414 (2022; Zbl 07538555) Full Text: DOI OpenURL
Kong, Wang; Huang, Zhongyi Artificial boundary conditions for time-fractional telegraph equation. (English) Zbl 07538554 Numer. Math., Theory Methods Appl. 15, No. 2, 360-386 (2022). MSC: 78A48 PDF BibTeX XML Cite \textit{W. Kong} and \textit{Z. Huang}, Numer. Math., Theory Methods Appl. 15, No. 2, 360--386 (2022; Zbl 07538554) Full Text: DOI OpenURL
Zhang, Jia-Li; Fang, Zhi-Wei; Sun, Hai-Wei Fast second-order evaluation for variable-order Caputo fractional derivative with applications to fractional sub-diffusion equations. (English) Zbl 07538548 Numer. Math., Theory Methods Appl. 15, No. 1, 200-226 (2022). MSC: 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{J.-L. Zhang} et al., Numer. Math., Theory Methods Appl. 15, No. 1, 200--226 (2022; Zbl 07538548) Full Text: DOI OpenURL
Liang, Dongdong; Gong, Wei; Xie, Xiaoping Finite element error estimation for parabolic optimal control problems with pointwise observations. (English) Zbl 07538547 Numer. Math., Theory Methods Appl. 15, No. 1, 165-199 (2022). MSC: 49J20 65N15 65N30 PDF BibTeX XML Cite \textit{D. Liang} et al., Numer. Math., Theory Methods Appl. 15, No. 1, 165--199 (2022; Zbl 07538547) Full Text: DOI OpenURL
Wang, Furong; Yang, Xuehua; Zhang, Haixiang; Wu, Lijiao A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel. (English) Zbl 07538449 Math. Comput. Simul. 199, 38-59 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{F. Wang} et al., Math. Comput. Simul. 199, 38--59 (2022; Zbl 07538449) Full Text: DOI OpenURL
Badia, Ismaïl; Caudron, Boris; Antoine, Xavier; Geuzaine, Christophe A well-conditioned weak coupling of boundary element and high-order finite element methods for time-harmonic electromagnetic scattering by inhomogeneous objects. (English) Zbl 07538371 SIAM J. Sci. Comput. 44, No. 3, B640-B667 (2022). MSC: 35Q61 78A45 41A21 65N38 65N30 65F08 65N55 PDF BibTeX XML Cite \textit{I. Badia} et al., SIAM J. Sci. Comput. 44, No. 3, B640--B667 (2022; Zbl 07538371) Full Text: DOI OpenURL
Sharan, Nek; Brady, Peter T.; Livescu, Daniel Time stability of strong boundary conditions in finite-difference schemes for hyperbolic systems. (English) Zbl 07538286 SIAM J. Numer. Anal. 60, No. 3, 1331-1362 (2022). MSC: 65M06 65M12 76M20 PDF BibTeX XML Cite \textit{N. Sharan} et al., SIAM J. Numer. Anal. 60, No. 3, 1331--1362 (2022; Zbl 07538286) Full Text: DOI OpenURL
Hensel, Maurice; Yousept, Irwin Numerical analysis for Maxwell obstacle problems in electric shielding. (English) Zbl 07538277 SIAM J. Numer. Anal. 60, No. 3, 1083-1110 (2022). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M06 65N30 65M12 35L85 78M30 78M10 78M20 PDF BibTeX XML Cite \textit{M. Hensel} and \textit{I. Yousept}, SIAM J. Numer. Anal. 60, No. 3, 1083--1110 (2022; Zbl 07538277) Full Text: DOI OpenURL
Arf, Jeremias; Simeon, Bernd A space-time isogeometric method for the partial differential-algebraic system of Biot’s poroelasticity model. (English) Zbl 07538251 ETNA, Electron. Trans. Numer. Anal. 55, 310-340 (2022). MSC: 76S05 74F10 65M12 65M22 65M60 65D07 PDF BibTeX XML Cite \textit{J. Arf} and \textit{B. Simeon}, ETNA, Electron. Trans. Numer. Anal. 55, 310--340 (2022; Zbl 07538251) Full Text: DOI OpenURL
Huang, Pengzhan; Liao, Cheng A decoupling finite element method with different time steps for the micropolar fluid model. (English) Zbl 07538249 ETNA, Electron. Trans. Numer. Anal. 55, 263-284 (2022). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{P. Huang} and \textit{C. Liao}, ETNA, Electron. Trans. Numer. Anal. 55, 263--284 (2022; Zbl 07538249) Full Text: DOI OpenURL
He, Yue; Kawai, Reiichiro Moment and polynomial bounds for ruin-related quantities in risk theory. (English) Zbl 07538195 Eur. J. Oper. Res. 302, No. 3, 1255-1271 (2022). MSC: 90Bxx PDF BibTeX XML Cite \textit{Y. He} and \textit{R. Kawai}, Eur. J. Oper. Res. 302, No. 3, 1255--1271 (2022; Zbl 07538195) Full Text: DOI OpenURL
Cui, Di; Zou, Wencheng; Guo, Jian; Xiang, Zhengrong Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay. (English) Zbl 07537581 Appl. Math. Comput. 428, Article ID 127216, 16 p. (2022). MSC: 93Cxx 93Bxx 93Dxx PDF BibTeX XML Cite \textit{D. Cui} et al., Appl. Math. Comput. 428, Article ID 127216, 16 p. (2022; Zbl 07537581) Full Text: DOI OpenURL
Xia, ZeLiang; He, Shuping Finite-time asynchronous \(H_\infty\) fault-tolerant control for nonlinear hidden Markov jump systems with actuator and sensor faults. (English) Zbl 07537578 Appl. Math. Comput. 428, Article ID 127212, 15 p. (2022). MSC: 93Exx 93Bxx 93Cxx PDF BibTeX XML Cite \textit{Z. Xia} and \textit{S. He}, Appl. Math. Comput. 428, Article ID 127212, 15 p. (2022; Zbl 07537578) Full Text: DOI OpenURL
Burman, Erik; Hansbo, Peter; Larson, Mats G. Explicit time stepping for the wave equation using CutFEM with discrete extension. (English) Zbl 07537261 SIAM J. Sci. Comput. 44, No. 3, A1254-A1289 (2022). MSC: 65M60 65M06 65N30 65M12 65M15 PDF BibTeX XML Cite \textit{E. Burman} et al., SIAM J. Sci. Comput. 44, No. 3, A1254--A1289 (2022; Zbl 07537261) Full Text: DOI OpenURL
Houston, Paul; Rourke, Connor J.; van der Zee, Kristoffer G. Linearization of the travel time functional in porous media flows. (English) Zbl 07537255 SIAM J. Sci. Comput. 44, No. 3, B531-B557 (2022). MSC: 65N50 PDF BibTeX XML Cite \textit{P. Houston} et al., SIAM J. Sci. Comput. 44, No. 3, B531--B557 (2022; Zbl 07537255) Full Text: DOI OpenURL
Kloeden, Peter E. Attractors of deterministic and random lattice difference equations. (English) Zbl 07537124 Stoch. Dyn. 22, No. 2, Article ID 2240006, 16 p. (2022). MSC: 37C70 37L60 39A60 92D40 PDF BibTeX XML Cite \textit{P. E. Kloeden}, Stoch. Dyn. 22, No. 2, Article ID 2240006, 16 p. (2022; Zbl 07537124) Full Text: DOI OpenURL
Bessaih, Hakima; Millet, Annie Strong rates of convergence of space-time discretization schemes for the 2D Navier-Stokes equations with additive noise. (English) Zbl 07537123 Stoch. Dyn. 22, No. 2, Article ID 2240005, 40 p. (2022). MSC: 60H15 60H35 76D06 76M35 35Q30 65M60 PDF BibTeX XML Cite \textit{H. Bessaih} and \textit{A. Millet}, Stoch. Dyn. 22, No. 2, Article ID 2240005, 40 p. (2022; Zbl 07537123) Full Text: DOI OpenURL
Sahu, Subal Ranjan; Mohapatra, Jugal Numerical study of time delay singularly perturbed parabolic differential equations involving both small positive and negative space shifts. (English) Zbl 07537045 J. Appl. Anal. 28, No. 1, 121-134 (2022). MSC: 65-XX 35B25 35K20 65L11 65M06 65M12 PDF BibTeX XML Cite \textit{S. R. Sahu} and \textit{J. Mohapatra}, J. Appl. Anal. 28, No. 1, 121--134 (2022; Zbl 07537045) Full Text: DOI OpenURL
Tang, Zhuochao; Fu, Zhuojia; Chen, Meng; Huang, Jingfang An efficient collocation method for long-time simulation of heat and mass transport on evolving surfaces. (English) Zbl 07536795 J. Comput. Phys. 463, Article ID 111310, 17 p. (2022). MSC: 65Mxx 65Nxx 76Mxx PDF BibTeX XML Cite \textit{Z. Tang} et al., J. Comput. Phys. 463, Article ID 111310, 17 p. (2022; Zbl 07536795) Full Text: DOI OpenURL
Xie, Bin; Huang, Yichen; Xiao, Feng A high-fidelity solver based on hybrid numerical methods on unstructured grids for incompressible multiphase flows. (English) Zbl 07536789 J. Comput. Phys. 463, Article ID 111299, 28 p. (2022). MSC: 76Mxx 65Mxx 76Dxx PDF BibTeX XML Cite \textit{B. Xie} et al., J. Comput. Phys. 463, Article ID 111299, 28 p. (2022; Zbl 07536789) Full Text: DOI OpenURL
Pan, Kejia; Wu, Xiaoxin; Xu, Yufeng; Yuan, Guangwei An exact-interface-fitted mesh generator and linearity-preserving finite volume scheme for anisotropic elliptic interface problems. (English) Zbl 07536783 J. Comput. Phys. 463, Article ID 111293, 25 p. (2022). MSC: 65Nxx 65Mxx 35Jxx PDF BibTeX XML Cite \textit{K. Pan} et al., J. Comput. Phys. 463, Article ID 111293, 25 p. (2022; Zbl 07536783) Full Text: DOI OpenURL
Wan, Yifei; Xia, Yinhua A hybrid WENO scheme for steady-state simulations of Euler equations. (English) Zbl 07536782 J. Comput. Phys. 463, Article ID 111292, 28 p. (2022). MSC: 65Mxx 35Lxx 76Mxx PDF BibTeX XML Cite \textit{Y. Wan} and \textit{Y. Xia}, J. Comput. Phys. 463, Article ID 111292, 28 p. (2022; Zbl 07536782) Full Text: DOI OpenURL
Duffin, Connor; Cripps, Edward; Stemler, Thomas; Girolami, Mark Low-rank statistical finite elements for scalable model-data synthesis. (English) Zbl 07536762 J. Comput. Phys. 463, Article ID 111261, 17 p. (2022). MSC: 65Mxx 93Exx 68Txx PDF BibTeX XML Cite \textit{C. Duffin} et al., J. Comput. Phys. 463, Article ID 111261, 17 p. (2022; Zbl 07536762) Full Text: DOI OpenURL
Dahmen, Nour; Droniou, Jérôme; Rogier, François A cost-effective nonlinear extremum-preserving finite volume scheme for highly anisotropic diffusion on Cartesian grids, with application to radiation belt dynamics. (English) Zbl 07536760 J. Comput. Phys. 463, Article ID 111258, 19 p. (2022). MSC: 65Nxx 35Jxx 65Mxx PDF BibTeX XML Cite \textit{N. Dahmen} et al., J. Comput. Phys. 463, Article ID 111258, 19 p. (2022; Zbl 07536760) Full Text: DOI OpenURL
Huang, Guanlan; Xing, Yulong; Xiong, Tao High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers. (English) Zbl 07536759 J. Comput. Phys. 463, Article ID 111255, 25 p. (2022). MSC: 65Mxx 76Mxx 76Bxx PDF BibTeX XML Cite \textit{G. Huang} et al., J. Comput. Phys. 463, Article ID 111255, 25 p. (2022; Zbl 07536759) Full Text: DOI OpenURL
Terekhov, Kirill M.; Vassilevski, Yuri V. Finite volume method for coupled subsurface flow problems. II: Poroelasticity. (English) Zbl 07536731 J. Comput. Phys. 462, Article ID 111225, 21 p. (2022). MSC: 65Fxx 65Mxx 65Nxx PDF BibTeX XML Cite \textit{K. M. Terekhov} and \textit{Y. V. Vassilevski}, J. Comput. Phys. 462, Article ID 111225, 21 p. (2022; Zbl 07536731) Full Text: DOI OpenURL
Sun, Yuge; Zhang, Chuanlin; Su, Zhi-gang Disturbance observer-based composite voltage synchronisation control of three-phase four-leg inverter under load variation. (English) Zbl 07536239 Int. J. Control 95, No. 6, 1645-1657 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{Y. Sun} et al., Int. J. Control 95, No. 6, 1645--1657 (2022; Zbl 07536239) Full Text: DOI OpenURL
Zhang, Peng; Zhang, Xiaoyu A novel adaptive three-dimensional finite-time guidance law with terminal angle constraints for interception of maneuvering targets. (English) Zbl 07536234 Int. J. Control 95, No. 6, 1590-1599 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{P. Zhang} and \textit{X. Zhang}, Int. J. Control 95, No. 6, 1590--1599 (2022; Zbl 07536234) Full Text: DOI OpenURL
Yang, Di; Hu, Xin; Liu, Weijun; Guo, Chen Finite-time control design for course tracking of disturbed ships subject to input saturation. (English) Zbl 07536219 Int. J. Control 95, No. 5, 1409-1418 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{D. Yang} et al., Int. J. Control 95, No. 5, 1409--1418 (2022; Zbl 07536219) Full Text: DOI OpenURL
Selcuk, Burhan Quenching for porous medium equations. (English) Zbl 07535847 Tamkang J. Math. 53, No. 2, 175-185 (2022). MSC: 35B44 35B50 35K20 35K59 PDF BibTeX XML Cite \textit{B. Selcuk}, Tamkang J. Math. 53, No. 2, 175--185 (2022; Zbl 07535847) Full Text: DOI OpenURL
Gudoshnikov, Ivan; Makarenkov, Oleg; Rachinskii, Dmitrii Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems. (English) Zbl 07535618 SIAM J. Control Optim. 60, No. 3, 1320-1346 (2022). MSC: 47H11 70H45 26B30 34A60 PDF BibTeX XML Cite \textit{I. Gudoshnikov} et al., SIAM J. Control Optim. 60, No. 3, 1320--1346 (2022; Zbl 07535618) Full Text: DOI OpenURL
Goswami, Veena; Chaudhry, M. L. The queue \(Geo^X/G/1/N+1\) revisited. (English) Zbl 07535585 Commun. Stat., Theory Methods 51, No. 10, 3181-3201 (2022). MSC: 62-XX PDF BibTeX XML Cite \textit{V. Goswami} and \textit{M. L. Chaudhry}, Commun. Stat., Theory Methods 51, No. 10, 3181--3201 (2022; Zbl 07535585) Full Text: DOI OpenURL
Babu, Gajendra; Bansal, Komal A high order robust numerical scheme for singularly perturbed delay parabolic convection diffusion problems. (English) Zbl 07534932 J. Appl. Math. Comput. 68, No. 1, 363-389 (2022). MSC: 65Mxx 35Kxx 35Bxx PDF BibTeX XML Cite \textit{G. Babu} and \textit{K. Bansal}, J. Appl. Math. Comput. 68, No. 1, 363--389 (2022; Zbl 07534932) Full Text: DOI OpenURL
Zhang, Jia-Li; Fang, Zhi-Wei; Sun, Hai-Wei Exponential-sum-approximation technique for variable-order time-fractional diffusion equations. (English) Zbl 07534930 J. Appl. Math. Comput. 68, No. 1, 323-347 (2022). MSC: 33F05 65M06 65M12 PDF BibTeX XML Cite \textit{J.-L. Zhang} et al., J. Appl. Math. Comput. 68, No. 1, 323--347 (2022; Zbl 07534930) Full Text: DOI OpenURL
Carrillo, José A.; Chen, Lin; Wang, Qi An optimal mass transport method for random genetic drift. (English) Zbl 07534665 SIAM J. Numer. Anal. 60, No. 3, 940-969 (2022). MSC: 65M06 49M15 92D25 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., SIAM J. Numer. Anal. 60, No. 3, 940--969 (2022; Zbl 07534665) Full Text: DOI OpenURL
Bui, Duc Quang; Japhet, Caroline; Maday, Yvon; Omnes, Pascal Coupling parareal with optimized Schwarz waveform relaxation for parabolic problems. (English) Zbl 07534664 SIAM J. Numer. Anal. 60, No. 3, 913-939 (2022). MSC: 65M55 35K20 65M60 65M06 65N30 65M50 65M12 65M22 PDF BibTeX XML Cite \textit{D. Q. Bui} et al., SIAM J. Numer. Anal. 60, No. 3, 913--939 (2022; Zbl 07534664) Full Text: DOI OpenURL
Gao, Huadong; Li, Meng Efficient implementation of mixed finite element methods for parabolic problems. (English) Zbl 07534431 Appl. Math. Lett. 129, Article ID 107925, 8 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{H. Gao} and \textit{M. Li}, Appl. Math. Lett. 129, Article ID 107925, 8 p. (2022; Zbl 07534431) Full Text: DOI OpenURL
Cen, Dakang; Wang, Zhibo Time two-grid technique combined with temporal second order difference method for two-dimensional semilinear fractional sub-diffusion equations. (English) Zbl 07534428 Appl. Math. Lett. 129, Article ID 107919, 8 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{D. Cen} and \textit{Z. Wang}, Appl. Math. Lett. 129, Article ID 107919, 8 p. (2022; Zbl 07534428) Full Text: DOI OpenURL
Arthi, Ganesan; Brindha, Nallasamy; Baleanu, Dumitru Finite-time stability results for fractional damped dynamical systems with time delays. (English) Zbl 07534394 Nonlinear Anal., Model. Control 27, No. 2, 221-233 (2022). MSC: 34Kxx 93Cxx 34Axx PDF BibTeX XML Cite \textit{G. Arthi} et al., Nonlinear Anal., Model. Control 27, No. 2, 221--233 (2022; Zbl 07534394) Full Text: DOI OpenURL
Pan, Yu; Yan, Zhen-Guo; Peiró, Joaquim; Sherwin, Spencer J. Development of a balanced adaptive time-stepping strategy based on an implicit JFNK-DG compressible flow solver. (English) Zbl 07534237 Commun. Appl. Math. Comput. 4, No. 2, 728-757 (2022). MSC: 76N06 65M60 65L06 PDF BibTeX XML Cite \textit{Y. Pan} et al., Commun. Appl. Math. Comput. 4, No. 2, 728--757 (2022; Zbl 07534237) Full Text: DOI OpenURL
Zheng, Pan On a generalized volume-filling chemotaxis system with nonlinear signal production. (English) Zbl 07534068 Monatsh. Math. 198, No. 1, 211-231 (2022). MSC: 35B44 35B40 35B35 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{P. Zheng}, Monatsh. Math. 198, No. 1, 211--231 (2022; Zbl 07534068) Full Text: DOI OpenURL
Wang, Lingli; Li, Meng Galerkin finite element method for damped nonlinear Schrödinger equation. (English) Zbl 07533825 Appl. Numer. Math. 178, 216-247 (2022). MSC: 65Mxx 35Qxx 65Nxx PDF BibTeX XML Cite \textit{L. Wang} and \textit{M. Li}, Appl. Numer. Math. 178, 216--247 (2022; Zbl 07533825) Full Text: DOI OpenURL
Hu, Ye; Li, Changpin; Yan, Yubin Weak convergence of the L1 scheme for a stochastic subdiffusion problem driven by fractionally integrated additive noise. (English) Zbl 07533824 Appl. Numer. Math. 178, 192-215 (2022). MSC: 65Cxx 65Mxx 60Hxx PDF BibTeX XML Cite \textit{Y. Hu} et al., Appl. Numer. Math. 178, 192--215 (2022; Zbl 07533824) Full Text: DOI OpenURL
Ye, Xiu; Zhang, Shangyou A weak divergence CDG method for the biharmonic equation on triangular and tetrahedral meshes. (English) Zbl 07533822 Appl. Numer. Math. 178, 155-165 (2022). MSC: 65Nxx 65Mxx 35Jxx PDF BibTeX XML Cite \textit{X. Ye} and \textit{S. Zhang}, Appl. Numer. Math. 178, 155--165 (2022; Zbl 07533822) Full Text: DOI OpenURL
Kheirkhah, Farnaz; Hajipour, Mojtaba; Baleanu, Dumitru The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations. (English) Zbl 07533815 Appl. Numer. Math. 178, 25-40 (2022). MSC: 65Mxx 35Rxx 35Kxx PDF BibTeX XML Cite \textit{F. Kheirkhah} et al., Appl. Numer. Math. 178, 25--40 (2022; Zbl 07533815) Full Text: DOI OpenURL
Cai, Yongyong; Fu, Jinxue; Liu, Jianfeng; Wang, Tingchun A fourth-order compact finite difference scheme for the quantum Zakharov system that perfectly inherits both mass and energy conservation. (English) Zbl 07533814 Appl. Numer. Math. 178, 1-24 (2022). MSC: 65Mxx 35Qxx 76Xxx PDF BibTeX XML Cite \textit{Y. Cai} et al., Appl. Numer. Math. 178, 1--24 (2022; Zbl 07533814) Full Text: DOI OpenURL
Jing, Haojie; Peng, Jiangyan; Jiang, Zhiquan; Bao, Qian Asymptotic estimates for finite-time ruin probability in a discrete-time risk model with dependence structures and CMC simulations. (English) Zbl 07533658 Commun. Stat., Theory Methods 51, No. 11, 3761-3786 (2022). MSC: 62P05 62E20 62-XX PDF BibTeX XML Cite \textit{H. Jing} et al., Commun. Stat., Theory Methods 51, No. 11, 3761--3786 (2022; Zbl 07533658) Full Text: DOI OpenURL
Cheng, Fengyang; Xu, Hui The finite-time ruin probability of the nonhomogeneous Poisson risk model with conditionally independent subexponential claims. (English) Zbl 07533573 Commun. Stat., Theory Methods 51, No. 12, 4119-4132 (2022). MSC: 62E20 62P05 PDF BibTeX XML Cite \textit{F. Cheng} and \textit{H. Xu}, Commun. Stat., Theory Methods 51, No. 12, 4119--4132 (2022; Zbl 07533573) Full Text: DOI OpenURL
Li, Xiaoli; Chen, Yanping; Chen, Chuanjun An improved two-grid technique for the nonlinear time-fractional parabolic equation based on the block-centered finite difference method. (English) Zbl 07533105 J. Comput. Math. 40, No. 3, 455-473 (2022). MSC: 26A33 65M06 65M12 65M15 65M55 PDF BibTeX XML Cite \textit{X. Li} et al., J. Comput. Math. 40, No. 3, 455--473 (2022; Zbl 07533105) Full Text: DOI OpenURL
Yang, Huaijun; Shi, Dongyang Unconditionally optimal error estimates of the bilinear-constant scheme for time-dependent Navier-Stokes equations. (English) Zbl 07533091 J. Comput. Math. 40, No. 1, 127-146 (2022). MSC: 65M60 65M12 65N15 PDF BibTeX XML Cite \textit{H. Yang} and \textit{D. Shi}, J. Comput. Math. 40, No. 1, 127--146 (2022; Zbl 07533091) Full Text: DOI OpenURL
Mariappan, Manikandan; Tamilselvan, Ayyadurai An efficient numerical method for a nonlinear system of singularly perturbed differential equations arising in a two-time scale system. (English) Zbl 07532872 J. Appl. Math. Comput. 68, No. 2, 1069-1086 (2022). MSC: 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Mariappan} and \textit{A. Tamilselvan}, J. Appl. Math. Comput. 68, No. 2, 1069--1086 (2022; Zbl 07532872) Full Text: DOI OpenURL