Rudenko, Yu. K.; Vinnichenko, N. A.; Plaksina, Yu. Yu.; Pushtaev, A. V.; Uvarov, A. V. Horizontal convective flow from a line heat source located at the liquid-gas interface in presence of surface film. (English) Zbl 07552257 J. Fluid Mech. 944, Paper No. A35, 23 p. (2022). MSC: 76R10 76D45 76D05 76M20 76-05 80A19 PDF BibTeX XML Cite \textit{Yu. K. Rudenko} et al., J. Fluid Mech. 944, Paper No. A35, 23 p. (2022; Zbl 07552257) Full Text: DOI OpenURL
Modebei, Mark I. Optimized hybrid block integrator for the numerical solution of third order initial and boundary value problems. (English) Zbl 07549741 J. Niger. Math. Soc. 41, No. 1, 49-64 (2022). MSC: 65L60 65L05 65L10 65L06 65L12 PDF BibTeX XML Cite \textit{M. I. Modebei}, J. Niger. Math. Soc. 41, No. 1, 49--64 (2022; Zbl 07549741) Full Text: Link OpenURL
She, Zi-Hang A class of unconditioned stable 4-point WSGD schemes and fast iteration methods for space fractional diffusion equations. (English) Zbl 07549606 J. Sci. Comput. 92, No. 1, Paper No. 18, 35 p. (2022). MSC: 26A33 65F10 65L12 65L20 65M22 PDF BibTeX XML Cite \textit{Z.-H. She}, J. Sci. Comput. 92, No. 1, Paper No. 18, 35 p. (2022; Zbl 07549606) Full Text: DOI OpenURL
Liu, Lulu; Hwang, Feng-Nan; Luo, Li; Cai, Xiao-Chuan; Keyes, David E. A nonlinear elimination preconditioned inexact Newton algorithm. (English) Zbl 07547926 SIAM J. Sci. Comput. 44, No. 3, A1579-A1605 (2022). MSC: 65H20 65N06 65N22 65Y05 76H05 PDF BibTeX XML Cite \textit{L. Liu} et al., SIAM J. Sci. Comput. 44, No. 3, A1579--A1605 (2022; Zbl 07547926) Full Text: DOI OpenURL
Debela, Habtamu Garoma Robust numerical method for singularly perturbed differential equations having both large and small delay. (English) Zbl 07547351 Arab J. Math. Sci. 28, No. 1, 87-99 (2022). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{H. G. Debela}, Arab J. Math. Sci. 28, No. 1, 87--99 (2022; Zbl 07547351) Full Text: DOI OpenURL
Aydinlik, Soner An efficient method for oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. (English) Zbl 07547179 Int. J. Biomath. 15, No. 5, Article ID 2250019, 15 p. (2022). MSC: 92C37 34B15 34B16 65L10 65L12 PDF BibTeX XML Cite \textit{S. Aydinlik}, Int. J. Biomath. 15, No. 5, Article ID 2250019, 15 p. (2022; Zbl 07547179) Full Text: DOI OpenURL
Pandey, Pramod Kumar Numerical solution of a seventh order boundary value problem by splitting coupled finite difference method. (English) Zbl 07546755 Palest. J. Math. 11, No. 1, 370-377 (2022). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{P. K. Pandey}, Palest. J. Math. 11, No. 1, 370--377 (2022; Zbl 07546755) Full Text: Link OpenURL
Oruç, Ömer An accurate computational method for two-dimensional (2D) fractional Rayleigh-Stokes problem for a heated generalized second grade fluid via linear barycentric interpolation method. (English) Zbl 07546705 Comput. Math. Appl. 118, 120-131 (2022). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{Ö. Oruç}, Comput. Math. Appl. 118, 120--131 (2022; Zbl 07546705) Full Text: DOI OpenURL
Cakir, Hayriye Guckir; Cakir, Firat; Çakir, Musa A numerical method on Bakhvalov-Shishkin mesh for Volterra integro-differential equations with a boundary layer. (English) Zbl 07545441 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 51-67 (2022). MSC: 65R20 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{H. G. Cakir} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 51--67 (2022; Zbl 07545441) Full Text: DOI OpenURL
Debela, Habtamu G.; Woldaregay, Mesfin M.; Duressa, Gemechis F. Robust numerical method for singularly perturbed convection-diffusion type problems with non-local boundary condition. (English) Zbl 07545150 Math. Model. Anal. 27, No. 2, 199-214 (2022). MSC: 65L10 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{H. G. Debela} et al., Math. Model. Anal. 27, No. 2, 199--214 (2022; Zbl 07545150) Full Text: DOI OpenURL
Zhang, Shenggang; Zhu, Chungang; Gao, Qinjiao Accuracy raising technique for multivariate spline quasi-interpolants over type-2 triangulations. (English) Zbl 07544124 J. Math. Res. Appl. 42, No. 3, 318-330 (2022). MSC: 41A25 65D05 65M06 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Math. Res. Appl. 42, No. 3, 318--330 (2022; Zbl 07544124) Full Text: DOI OpenURL
Lapin, Alexander Mesh scheme for a phase transition problem with time-fractional derivative. (English) Zbl 07543678 Russ. J. Numer. Anal. Math. Model. 37, No. 3, 149-158 (2022). MSC: 65Mxx 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{A. Lapin}, Russ. J. Numer. Anal. Math. Model. 37, No. 3, 149--158 (2022; Zbl 07543678) Full Text: DOI OpenURL
Oudaani, Jaouad; Raïssouli, Mustapha; El Mouatasim, Abdelkrim Structural acoustic problem and dynamic nonlinear plate equations. (English) Zbl 07540648 Appl. Anal. 101, No. 9, 3210-3230 (2022). MSC: 74F10 74K20 74H20 74H25 74S20 35Q74 PDF BibTeX XML Cite \textit{J. Oudaani} et al., Appl. Anal. 101, No. 9, 3210--3230 (2022; Zbl 07540648) Full Text: DOI OpenURL
Du, Yu; Zhang, Jiwei Numerical solution of a one-dimensional nonlocal Helmholtz equation by perfectly matched layers. (English) Zbl 07538555 Numer. Math., Theory Methods Appl. 15, No. 2, 387-414 (2022). MSC: 49M25 65N22 65N06 65R20 82C21 46N40 45A05 PDF BibTeX XML Cite \textit{Y. Du} and \textit{J. Zhang}, Numer. Math., Theory Methods Appl. 15, No. 2, 387--414 (2022; Zbl 07538555) Full Text: DOI OpenURL
Sahu, Subal Ranjan; Mohapatra, Jugal Numerical study of time delay singularly perturbed parabolic differential equations involving both small positive and negative space shifts. (English) Zbl 07537045 J. Appl. Anal. 28, No. 1, 121-134 (2022). MSC: 65-XX 35B25 35K20 65L11 65M06 65M12 PDF BibTeX XML Cite \textit{S. R. Sahu} and \textit{J. Mohapatra}, J. Appl. Anal. 28, No. 1, 121--134 (2022; Zbl 07537045) Full Text: DOI OpenURL
Bui, Duc Quang; Japhet, Caroline; Maday, Yvon; Omnes, Pascal Coupling parareal with optimized Schwarz waveform relaxation for parabolic problems. (English) Zbl 07534664 SIAM J. Numer. Anal. 60, No. 3, 913-939 (2022). MSC: 65M55 35K20 65M60 65M06 65N30 65M50 65M12 65M22 PDF BibTeX XML Cite \textit{D. Q. Bui} et al., SIAM J. Numer. Anal. 60, No. 3, 913--939 (2022; Zbl 07534664) Full Text: DOI OpenURL
Kumar, Anil; Rao, Pentyala Srinivasa Effect of moving stretching sheets on natural convection in partially heated square cavity filled with nanofluid. (English) Zbl 07533170 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 2, 283-297 (2022). MSC: 65N06 65N22 76D07 34B08 76E06 80A20 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{P. S. Rao}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 2, 283--297 (2022; Zbl 07533170) Full Text: DOI OpenURL
Zhang, Qianru; Tu, Bin; Fang, Qiaojun; Lu, Benzhuo A structure-preserving finite element discretization for the time-dependent Nernst-Planck equation. (English) Zbl 07532894 J. Appl. Math. Comput. 68, No. 3, 1545-1564 (2022). MSC: 65M60 65M06 65M22 65N30 65K10 49N60 49K10 35Q81 PDF BibTeX XML Cite \textit{Q. Zhang} et al., J. Appl. Math. Comput. 68, No. 3, 1545--1564 (2022; Zbl 07532894) Full Text: DOI OpenURL
Mariappan, Manikandan; Tamilselvan, Ayyadurai Higher order computational method for a singularly perturbed nonlinear system of differential equations. (English) Zbl 07532884 J. Appl. Math. Comput. 68, No. 2, 1351-1363 (2022). MSC: 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Mariappan} and \textit{A. Tamilselvan}, J. Appl. Math. Comput. 68, No. 2, 1351--1363 (2022; Zbl 07532884) Full Text: DOI OpenURL
Gupta, Aastha; Kaushik, Aditya A higher-order hybrid finite difference method based on grid equidistribution for fourth-order singularly perturbed differential equations. (English) Zbl 07532876 J. Appl. Math. Comput. 68, No. 2, 1163-1191 (2022). MSC: 65L12 65L10 65L11 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{A. Kaushik}, J. Appl. Math. Comput. 68, No. 2, 1163--1191 (2022; Zbl 07532876) Full Text: DOI OpenURL
Mariappan, Manikandan; Tamilselvan, Ayyadurai An efficient numerical method for a nonlinear system of singularly perturbed differential equations arising in a two-time scale system. (English) Zbl 07532872 J. Appl. Math. Comput. 68, No. 2, 1069-1086 (2022). MSC: 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Mariappan} and \textit{A. Tamilselvan}, J. Appl. Math. Comput. 68, No. 2, 1069--1086 (2022; Zbl 07532872) Full Text: DOI OpenURL
Chen, Yunkun Numerical method to modify the fractional-order diffusion equation. (English) Zbl 07532758 Adv. Math. Phys. 2022, Article ID 4846747, 10 p. (2022). MSC: 65M22 65M06 60J60 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Chen}, Adv. Math. Phys. 2022, Article ID 4846747, 10 p. (2022; Zbl 07532758) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Cakir, Musa; Amirali, Ilhame; Amiraliyev, Gabil M. Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method. (English) Zbl 07531739 J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022). MSC: 65R20 45J05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022; Zbl 07531739) Full Text: DOI OpenURL
Islam, Muhammad N.; Neugebauer, Jeffrey T. \(p\)-periodic solutions of a \(q\)-integral equation with finite delay. (English) Zbl 07531696 Differ. Equ. Appl. 14, No. 2, 325-333 (2022). MSC: 39A13 39A20 39A23 39A12 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{J. T. Neugebauer}, Differ. Equ. Appl. 14, No. 2, 325--333 (2022; Zbl 07531696) Full Text: DOI OpenURL
Sheng, Qin; Garcia-Montoya, Nina An operator splitting approach for two-dimensional Kawarada problems. (English) Zbl 07531690 Differ. Equ. Appl. 14, No. 2, 247-263 (2022). MSC: 65M50 35K65 PDF BibTeX XML Cite \textit{Q. Sheng} and \textit{N. Garcia-Montoya}, Differ. Equ. Appl. 14, No. 2, 247--263 (2022; Zbl 07531690) Full Text: DOI OpenURL
Kabeto, Masho Jima; Duressa, Gemechis File Implicit finite difference scheme for singularly perturbed Burger-Huxley equations. (English) Zbl 07526999 J. Partial Differ. Equations 35, No. 1, 87-100 (2022). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{M. J. Kabeto} and \textit{G. F. Duressa}, J. Partial Differ. Equations 35, No. 1, 87--100 (2022; Zbl 07526999) Full Text: DOI OpenURL
Edoh, Ayaboe K. A new kinetic-energy-preserving method based on the convective rotational form. (English) Zbl 07518059 J. Comput. Phys. 454, Article ID 110971, 22 p. (2022). MSC: 76Mxx 65Mxx 76Fxx PDF BibTeX XML Cite \textit{A. K. Edoh}, J. Comput. Phys. 454, Article ID 110971, 22 p. (2022; Zbl 07518059) Full Text: DOI OpenURL
MacLachlan, Scott P.; Madden, Niall; Nhan, Thái Anh A boundary-layer preconditioner for singularly perturbed convection diffusion. (English) Zbl 07511022 SIAM J. Matrix Anal. Appl. 43, No. 2, 561-583 (2022). MSC: 65F08 65N22 65N55 PDF BibTeX XML Cite \textit{S. P. MacLachlan} et al., SIAM J. Matrix Anal. Appl. 43, No. 2, 561--583 (2022; Zbl 07511022) Full Text: DOI OpenURL
Cakir, Musa; Gunes, Baransel Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations. (English) Zbl 07501799 Georgian Math. J. 29, No. 2, 193-203 (2022). MSC: 65L05 65L11 65L12 65L20 45D05 PDF BibTeX XML Cite \textit{M. Cakir} and \textit{B. Gunes}, Georgian Math. J. 29, No. 2, 193--203 (2022; Zbl 07501799) Full Text: DOI OpenURL
Mekonnen, Tariku Birabasa; Duressa, Gemechis File A fitted mesh cubic spline in tension method for singularly perturbed problems with two parameters. (English) Zbl 07500467 Int. J. Math. Math. Sci. 2022, Article ID 5410754, 11 p. (2022). MSC: 65M06 65M12 65M15 65M50 PDF BibTeX XML Cite \textit{T. B. Mekonnen} and \textit{G. F. Duressa}, Int. J. Math. Math. Sci. 2022, Article ID 5410754, 11 p. (2022; Zbl 07500467) Full Text: DOI OpenURL
Gebeyehu, M.; Garoma, H.; Deressa, A. Fitted numerical method for singularly perturbed semilinear three-point boundary value problem. (English) Zbl 1482.65123 Iran. J. Numer. Anal. Optim. 12, No. 1, 145-162 (2022). MSC: 65L11 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{M. Gebeyehu} et al., Iran. J. Numer. Anal. Optim. 12, No. 1, 145--162 (2022; Zbl 1482.65123) Full Text: DOI OpenURL
Chaudhary, Sudhakar; Srivastava, Vimal Semi-discrete finite-element approximation of nonlocal hyperbolic problem. (English) Zbl 07495652 Appl. Anal. 101, No. 2, 479-496 (2022). MSC: 65M60 65M06 65N30 65K10 65M12 65M15 65N22 35D35 35R09 35L72 74K05 74S05 PDF BibTeX XML Cite \textit{S. Chaudhary} and \textit{V. Srivastava}, Appl. Anal. 101, No. 2, 479--496 (2022; Zbl 07495652) Full Text: DOI OpenURL
Seibel, Daniel Boundary element methods for the wave equation based on hierarchical matrices and adaptive cross approximation. (English) Zbl 07493703 Numer. Math. 150, No. 2, 629-670 (2022). MSC: 65M38 65M60 65M06 65M50 65R20 PDF BibTeX XML Cite \textit{D. Seibel}, Numer. Math. 150, No. 2, 629--670 (2022; Zbl 07493703) Full Text: DOI arXiv OpenURL
Ren, Yupeng; Xing, Yulong; Qiu, Jianxian High order finite difference Hermite WENO fixed-point fast sweeping method for static Hamilton-Jacobi equations. (English) Zbl 1484.65188 Commun. Comput. Phys. 31, No. 1, 154-187 (2022). MSC: 65M06 35L65 65M22 PDF BibTeX XML Cite \textit{Y. Ren} et al., Commun. Comput. Phys. 31, No. 1, 154--187 (2022; Zbl 1484.65188) Full Text: DOI arXiv OpenURL
Ciavolella, Giorgia Effect of a membrane on diffusion-driven Turing instability. (English) Zbl 1485.35042 Acta Appl. Math. 178, Paper No. 2, 21 p. (2022). MSC: 35B36 35K51 35K57 35Q92 65M06 65M22 PDF BibTeX XML Cite \textit{G. Ciavolella}, Acta Appl. Math. 178, Paper No. 2, 21 p. (2022; Zbl 1485.35042) Full Text: DOI arXiv OpenURL
Sumit; Kumar, Shashikant; Kumar, Sunil A high order convergent adaptive numerical method for singularly perturbed nonlinear systems. (English) Zbl 07490251 Comput. Appl. Math. 41, No. 2, Paper No. 83, 16 p. (2022). MSC: 65L05 65L11 65L12 65L70 PDF BibTeX XML Cite \textit{Sumit} et al., Comput. Appl. Math. 41, No. 2, Paper No. 83, 16 p. (2022; Zbl 07490251) Full Text: DOI OpenURL
Zeaiter, Amal; Videcoq, Etienne; Fénot, Matthieu Real-time identification of PMSM losses through a novel past-time averaging method. (English) Zbl 07489716 Inverse Probl. 38, No. 4, Article ID 045006, 19 p. (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 80A23 80A19 35K05 35N25 35R30 35R25 65M06 65J20 35R07 65L09 PDF BibTeX XML Cite \textit{A. Zeaiter} et al., Inverse Probl. 38, No. 4, Article ID 045006, 19 p. (2022; Zbl 07489716) Full Text: DOI OpenURL
Liu, Yao-Ning; Muratova, Galina V. A block fast regularized Hermitian splitting preconditioner for two-dimensional discretized almost isotropic spatial fractional diffusion equations. (English) Zbl 1482.65046 East Asian J. Appl. Math. 12, No. 2, 213-232 (2022). MSC: 65F08 65F10 65N06 65N22 PDF BibTeX XML Cite \textit{Y.-N. Liu} and \textit{G. V. Muratova}, East Asian J. Appl. Math. 12, No. 2, 213--232 (2022; Zbl 1482.65046) Full Text: DOI OpenURL
Yang, Zhiwei; Liu, Huan; Guo, Xu; Wang, Hong A support vector machine method for two time-scale variable-order time-fractional diffusion equations. (English) Zbl 1482.65156 East Asian J. Appl. Math. 12, No. 1, 145-162 (2022). MSC: 65M06 35R11 65M22 PDF BibTeX XML Cite \textit{Z. Yang} et al., East Asian J. Appl. Math. 12, No. 1, 145--162 (2022; Zbl 1482.65156) Full Text: DOI OpenURL
Kivva, Sergii Entropy stable flux correction for scalar hyperbolic conservation laws. (English) Zbl 07488720 J. Sci. Comput. 91, No. 1, Paper No. 10, 21 p. (2022). MSC: 65M06 49J20 49M41 35L65 PDF BibTeX XML Cite \textit{S. Kivva}, J. Sci. Comput. 91, No. 1, Paper No. 10, 21 p. (2022; Zbl 07488720) Full Text: DOI arXiv OpenURL
Chandra Sekhara Rao, S.; Chaturvedi, Abhay Kumar Analysis of an almost fourth-order parameter-uniformly convergent numerical method for singularly perturbed semilinear reaction-diffusion system with non-smooth source term. (English) Zbl 07484249 Appl. Math. Comput. 421, Article ID 126944, 26 p. (2022). MSC: 34B15 65L10 65L11 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{S. Chandra Sekhara Rao} and \textit{A. K. Chaturvedi}, Appl. Math. Comput. 421, Article ID 126944, 26 p. (2022; Zbl 07484249) Full Text: DOI OpenURL
Karjoun, Hasan; Beljadid, Abdelaziz; LeFloch, Philippe G. A structure-preserving algorithm for surface water flows with transport processes. (English) Zbl 07483090 Adv. Comput. Math. 48, No. 1, Paper No. 7, 32 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65M22 65M12 35L65 35B09 76T20 76B15 35Q35 35Q49 PDF BibTeX XML Cite \textit{H. Karjoun} et al., Adv. Comput. Math. 48, No. 1, Paper No. 7, 32 p. (2022; Zbl 07483090) Full Text: DOI OpenURL
Clayton, Bennett; Guermond, Jean-Luc; Popov, Bojan Invariant domain-preserving approximations for the Euler equations with tabulated equation of state. (English) Zbl 07482212 SIAM J. Sci. Comput. 44, No. 1, A444-A470 (2022). Reviewer: Jan Giesselmann (Darmstadt) MSC: 65M60 65M06 65N30 65M12 65M22 35L65 76N10 35Q31 PDF BibTeX XML Cite \textit{B. Clayton} et al., SIAM J. Sci. Comput. 44, No. 1, A444--A470 (2022; Zbl 07482212) Full Text: DOI OpenURL
David, Noemi; Ruan, Xinran An asymptotic preserving scheme for a tumor growth model of porous medium type. (English) Zbl 07477215 ESAIM, Math. Model. Numer. Anal. 56, No. 1, 121-150 (2022). MSC: 65-XX 35K57 35K65 35Q92 65M06 65M12 PDF BibTeX XML Cite \textit{N. David} and \textit{X. Ruan}, ESAIM, Math. Model. Numer. Anal. 56, No. 1, 121--150 (2022; Zbl 07477215) Full Text: DOI arXiv OpenURL
Rao, S. Chandra Sekhara; Chaturvedi, Abhay Kumar Analysis and implementation of a computational technique for a coupled system of two singularly perturbed parabolic semilinear reaction-diffusion equations having discontinuous source terms. (English) Zbl 1480.65222 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106232, 34 p. (2022). MSC: 65M06 65M12 65M15 65M22 PDF BibTeX XML Cite \textit{S. C. S. Rao} and \textit{A. K. Chaturvedi}, Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106232, 34 p. (2022; Zbl 1480.65222) Full Text: DOI OpenURL
Abgrall, Rémi; Torlo, Davide Some preliminary results on a high order asymptotic preserving computationally explicit kinetic scheme. (English) Zbl 07474600 Commun. Math. Sci. 20, No. 2, 297-326 (2022). MSC: 65M06 65L06 65L04 65N22 65M12 PDF BibTeX XML Cite \textit{R. Abgrall} and \textit{D. Torlo}, Commun. Math. Sci. 20, No. 2, 297--326 (2022; Zbl 07474600) Full Text: DOI arXiv OpenURL
Vabishchevich, Petr N. Some methods for solving equations with an operator function and applications for problems with a fractional power of an operator. (English) Zbl 07474422 J. Comput. Appl. Math. 407, Article ID 114096, 13 p. (2022). MSC: 65Mxx 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 407, Article ID 114096, 13 p. (2022; Zbl 07474422) Full Text: DOI arXiv OpenURL
Drake, Dow; Gopalakrishnan, Jay; Schöberl, Joachim; Wintersteiger, Christoph Convergence analysis of some tent-based schemes for linear hyperbolic systems. (English) Zbl 07473341 Math. Comput. 91, No. 334, 699-733 (2022). MSC: 65M60 65M06 65M22 65N30 65M12 65N15 35L65 PDF BibTeX XML Cite \textit{D. Drake} et al., Math. Comput. 91, No. 334, 699--733 (2022; Zbl 07473341) Full Text: DOI arXiv OpenURL
Abreu, Eduardo; François, Jean; Lambert, Wanderson; Pérez, John A semi-discrete Lagrangian-Eulerian scheme for hyperbolic-transport models. (English) Zbl 07472439 J. Comput. Appl. Math. 406, Article ID 114011, 28 p. (2022). MSC: 65-XX 35L65 65M06 65M12 76S05 76M10 PDF BibTeX XML Cite \textit{E. Abreu} et al., J. Comput. Appl. Math. 406, Article ID 114011, 28 p. (2022; Zbl 07472439) Full Text: DOI OpenURL
Parvar, S.; da Silva, C. B.; Pinho, F. T. The steady laminar planar mixing layer flow of viscoelastic FENE-P fluids. (English) Zbl 07469798 J. Eng. Math. 132, Paper No. 14, 24 p. (2022). MSC: 76A10 76M55 76M20 PDF BibTeX XML Cite \textit{S. Parvar} et al., J. Eng. Math. 132, Paper No. 14, 24 p. (2022; Zbl 07469798) Full Text: DOI OpenURL
Kumar, Kamalesh; Chakravarthy, P. Pramod; Ramos, Higinio; Vigo-Aguiar, Jesús A stable finite difference scheme and error estimates for parabolic singularly perturbed PDEs with shift parameters. (English) Zbl 1481.65137 J. Comput. Appl. Math. 405, Article ID 113050, 15 p. (2022). MSC: 65M06 35K20 65L11 65M12 65M15 65B05 35B25 PDF BibTeX XML Cite \textit{K. Kumar} et al., J. Comput. Appl. Math. 405, Article ID 113050, 15 p. (2022; Zbl 1481.65137) Full Text: DOI OpenURL
Yang, Junxiang; Kim, Junseok Numerical simulation and analysis of the Swift-Hohenberg equation by the stabilized Lagrange multiplier approach. (English) Zbl 07453282 Comput. Appl. Math. 41, No. 1, Paper No. 20, 23 p. (2022). MSC: 34D20 37M05 65M06 65N22 PDF BibTeX XML Cite \textit{J. Yang} and \textit{J. Kim}, Comput. Appl. Math. 41, No. 1, Paper No. 20, 23 p. (2022; Zbl 07453282) Full Text: DOI OpenURL
Kudu, Mustafa; Amirali, Ilhame; Amiraliyev, Gabil M. A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition. (English) Zbl 1483.65125 J. Comput. Appl. Math. 404, Article ID 113894, 9 p. (2022). MSC: 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Kudu} et al., J. Comput. Appl. Math. 404, Article ID 113894, 9 p. (2022; Zbl 1483.65125) Full Text: DOI OpenURL
Lewis, Thomas; Morris, Quinn; Zhang, Yi Convergence, stability analysis, and solvers for approximating sublinear positone and semipositone boundary value problems using finite difference methods. (English) Zbl 07444639 J. Comput. Appl. Math. 404, Article ID 113880, 22 p. (2022). MSC: 65N06 65N12 65N22 35B09 35B32 PDF BibTeX XML Cite \textit{T. Lewis} et al., J. Comput. Appl. Math. 404, Article ID 113880, 22 p. (2022; Zbl 07444639) Full Text: DOI OpenURL
Macías-Díaz, J. E.; Vargas-Rodríguez, Héctor Analysis and simulation of numerical schemes for nonlinear hyperbolic predator-prey models with spatial diffusion. (English) Zbl 1481.65147 J. Comput. Appl. Math. 404, Article ID 113636, 16 p. (2022). MSC: 65M06 65M22 65M12 35K55 92D25 35Q92 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} and \textit{H. Vargas-Rodríguez}, J. Comput. Appl. Math. 404, Article ID 113636, 16 p. (2022; Zbl 1481.65147) Full Text: DOI OpenURL
Shakti, Deepti; Mohapatra, Jugal; Das, Pratibhamoy; Vigo-Aguiar, Jesus A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. (English) Zbl 07444599 J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022). MSC: 65Mxx 35B25 35B50 35B51 35K51 35K57 65L11 76M45 65M06 65M15 65M50 65N50 PDF BibTeX XML Cite \textit{D. Shakti} et al., J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022; Zbl 07444599) Full Text: DOI OpenURL
Amirali, Ilhame; Amiraliyev, Gabil M. Three layer difference method for linear pseudo-parabolic equation with delay. (English) Zbl 1482.65134 J. Comput. Appl. Math. 401, Article ID 113786, 8 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 65N06 65M22 65M12 65M15 35R07 PDF BibTeX XML Cite \textit{I. Amirali} and \textit{G. M. Amiraliyev}, J. Comput. Appl. Math. 401, Article ID 113786, 8 p. (2022; Zbl 1482.65134) Full Text: DOI OpenURL
Sharma, Bhuvnesh; Kumar, Sunil; Cattani, Carlo Laminar convection of power-law fluids in differentially heated closed region: CFD analysis. (English) Zbl 1481.76199 Singh, Jagdev (ed.) et al., Methods of mathematical modelling and computation for complex systems. Cham: Springer. Stud. Syst. Decis. Control 373, 45-63 (2022). Reviewer: Ioan Pop (Cluj-Napoca) MSC: 76R10 76A05 76M20 80A19 PDF BibTeX XML Cite \textit{B. Sharma} et al., Stud. Syst. Decis. Control 373, 45--63 (2022; Zbl 1481.76199) Full Text: DOI OpenURL
Yapman, Ömer; Amiraliyev, Gabil M. Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation. (English) Zbl 07544024 Chaos Solitons Fractals 150, Article ID 111100, 11 p. (2021). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} and \textit{G. M. Amiraliyev}, Chaos Solitons Fractals 150, Article ID 111100, 11 p. (2021; Zbl 07544024) Full Text: DOI OpenURL
Cakir, Musa; Amiraliyev, Gabil M. A second order numerical method for singularly perturbed problem with non-local boundary condition. (English) Zbl 07534988 J. Appl. Math. Comput. 67, No. 1-2, 919-936 (2021). MSC: 65L11 65L12 65L20 65L70 34D15 PDF BibTeX XML Cite \textit{M. Cakir} and \textit{G. M. Amiraliyev}, J. Appl. Math. Comput. 67, No. 1--2, 919--936 (2021; Zbl 07534988) Full Text: DOI OpenURL
Duressa, Gemechis File; Debela, Habtamu Garoma Numerical solution of singularly perturbed differential difference equations with mixed parameters. (English) Zbl 07533915 J. Math. Model. 9, No. 4, 691-705 (2021). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{G. F. Duressa} and \textit{H. G. Debela}, J. Math. Model. 9, No. 4, 691--705 (2021; Zbl 07533915) Full Text: DOI OpenURL
Jayalakshmi, Govindarajan Janani; Tamilselvan, Ayyadurai Second order difference scheme for singularly perturbed boundary turning point problems. (English) Zbl 07533911 J. Math. Model. 9, No. 4, 633-643 (2021). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{G. J. Jayalakshmi} and \textit{A. Tamilselvan}, J. Math. Model. 9, No. 4, 633--643 (2021; Zbl 07533911) Full Text: DOI OpenURL
Bokanowski, Olivier; Debrabant, Kristian Backward differentiation formula finite difference schemes for diffusion equations with an obstacle term. (English) Zbl 07528266 IMA J. Numer. Anal. 41, No. 2, 900-934 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{O. Bokanowski} and \textit{K. Debrabant}, IMA J. Numer. Anal. 41, No. 2, 900--934 (2021; Zbl 07528266) Full Text: DOI OpenURL
Shakti, D.; Mohapatra, J. Uniform convergence analysis of monotone hybrid scheme for convection-diffusion problems on layer adapted meshes. (English) Zbl 07523869 Math. Rep., Buchar. 23(73), No. 3, 325-357 (2021). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{D. Shakti} and \textit{J. Mohapatra}, Math. Rep., Buchar. 23(73), No. 3, 325--357 (2021; Zbl 07523869) OpenURL
Nong, Lijuan; Chen, An; Yi, Qian; Li, Congcong Fast Crank-Nicolson compact difference scheme for the two-dimensional time-fractional mobile/immobile transport equation. (English) Zbl 1484.65186 AIMS Math. 6, No. 6, 6242-6254 (2021). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{L. Nong} et al., AIMS Math. 6, No. 6, 6242--6254 (2021; Zbl 1484.65186) Full Text: DOI OpenURL
Shahid, Naveed; Rehman, Muhammad Aziz-ur; Ahmed, Nauman; Baleanu, Dumitru; Iqbal, Muhammad Sajid; Rafiq, Muhammad Numerical investigation for the nonlinear model of hepatitis-B virus with the existence of optimal solution. (English) Zbl 1484.92004 AIMS Math. 6, No. 8, 8294-8314 (2021). MSC: 92-08 65N06 92D30 PDF BibTeX XML Cite \textit{N. Shahid} et al., AIMS Math. 6, No. 8, 8294--8314 (2021; Zbl 1484.92004) Full Text: DOI OpenURL
Lamballais, Eric; Cruz, Rodrigo Vicente; Perrin, Rodolphe Viscous and hyperviscous filtering for direct and large-eddy simulation. (English) Zbl 07511448 J. Comput. Phys. 431, Article ID 110115, 26 p. (2021). MSC: 76Fxx 76Mxx 65Mxx PDF BibTeX XML Cite \textit{E. Lamballais} et al., J. Comput. Phys. 431, Article ID 110115, 26 p. (2021; Zbl 07511448) Full Text: DOI OpenURL
Abdel-Rehim, E. A.; Hassan, R. M.; El-Sayed, A. M. A. On simulating the short and long memory of ergodic Markov and non-Markov genetic diffusion processes on the long run. (English) Zbl 07511361 Chaos Solitons Fractals 142, Article ID 110478, 16 p. (2021). MSC: 60G05 60G10 60H30 60H35 60J10 60J20 60J60 60J75 60J85 60J80 65M06 PDF BibTeX XML Cite \textit{E. A. Abdel-Rehim} et al., Chaos Solitons Fractals 142, Article ID 110478, 16 p. (2021; Zbl 07511361) Full Text: DOI OpenURL
Abdulla, Murad Ibrahim; Duressa, Gemechis File; Debela, Habtamu Garoma Robust numerical method for singularly perturbed differential equations with large delay. (English) Zbl 1483.65123 Demonstr. Math. 54, 576-589 (2021). MSC: 65L11 34K26 65L12 65L20 PDF BibTeX XML Cite \textit{M. I. Abdulla} et al., Demonstr. Math. 54, 576--589 (2021; Zbl 1483.65123) Full Text: DOI OpenURL
Kharshiladze, Oleg; Belashov, Vasily; Belashova, Elena Solitons on a shallow fluid of variable depth. (English) Zbl 07487537 Trans. A. Razmadze Math. Inst. 175, No. 2, 215-224 (2021). MSC: 76B25 76B15 76B45 76M20 PDF BibTeX XML Cite \textit{O. Kharshiladze} et al., Trans. A. Razmadze Math. Inst. 175, No. 2, 215--224 (2021; Zbl 07487537) Full Text: Link OpenURL
Liu, Li-Bin; Liang, Ying; Bao, Xiaobing; Fang, Honglin An efficient adaptive grid method for a system of singularly perturbed convection-diffusion problems with Robin boundary conditions. (English) Zbl 1485.65085 Adv. Difference Equ. 2021, Paper No. 6, 13 p. (2021). MSC: 65L12 65L10 65L50 34E15 34B15 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Adv. Difference Equ. 2021, Paper No. 6, 13 p. (2021; Zbl 1485.65085) Full Text: DOI OpenURL
Pultarová, Ivana; Ladecký, Martin Two-sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems. (English) Zbl 07478613 Numer. Linear Algebra Appl. 28, No. 5, e2382, 15 p. (2021). MSC: 65N22 65N30 PDF BibTeX XML Cite \textit{I. Pultarová} and \textit{M. Ladecký}, Numer. Linear Algebra Appl. 28, No. 5, e2382, 15 p. (2021; Zbl 07478613) Full Text: DOI OpenURL
López Pouso, Óscar; Jumaniyazov, Nizomjon Numerical solution of the Azimuth-dependent Fokker-Planck equation in 1D slab geometry. (English) Zbl 07476658 J. Comput. Theor. Transp. 50, No. 2, 102-133 (2021). MSC: 65-XX 35K65 35Q84 42A16 65M22 78A35 65Z05 PDF BibTeX XML Cite \textit{Ó. López Pouso} and \textit{N. Jumaniyazov}, J. Comput. Theor. Transp. 50, No. 2, 102--133 (2021; Zbl 07476658) Full Text: DOI OpenURL
Alba-Pérez, J.; Macías-Díaz, J. E. A positive and bounded convergent scheme for general space-fractional diffusion-reaction systems with inertial times. (English) Zbl 1480.65201 Int. J. Comput. Math. 98, No. 6, 1071-1097 (2021). MSC: 65M06 65M22 65Q10 PDF BibTeX XML Cite \textit{J. Alba-Pérez} and \textit{J. E. Macías-Díaz}, Int. J. Comput. Math. 98, No. 6, 1071--1097 (2021; Zbl 1480.65201) Full Text: DOI OpenURL
Rai, Pratima; Yadav, Swati Robust numerical schemes for singularly perturbed delay parabolic convection-diffusion problems with degenerate coefficient. (English) Zbl 1480.65220 Int. J. Comput. Math. 98, No. 1, 195-221 (2021). MSC: 65M06 65M12 65M15 65M50 PDF BibTeX XML Cite \textit{P. Rai} and \textit{S. Yadav}, Int. J. Comput. Math. 98, No. 1, 195--221 (2021; Zbl 1480.65220) Full Text: DOI arXiv OpenURL
Aarthika, K.; Shanthi, V.; Ramos, Higinio A finite-difference scheme for a coupled system of singularly perturbed time-dependent reaction-diffusion equations with discontinuous source terms. (English) Zbl 1480.65312 Int. J. Comput. Math. 98, No. 1, 120-135 (2021). MSC: 65N06 65N22 35B25 PDF BibTeX XML Cite \textit{K. Aarthika} et al., Int. J. Comput. Math. 98, No. 1, 120--135 (2021; Zbl 1480.65312) Full Text: DOI OpenURL
Siva Prasad, E.; Phaneendra, K. Solution of singularly perturbed boundary value problems with singularity using variable mesh finite difference method. (English) Zbl 07473499 J. Dyn. Syst. Geom. Theor. 19, No. 1, 113-124 (2021). MSC: 65L10 65L11 65L12 PDF BibTeX XML Cite \textit{E. Siva Prasad} and \textit{K. Phaneendra}, J. Dyn. Syst. Geom. Theor. 19, No. 1, 113--124 (2021; Zbl 07473499) Full Text: DOI OpenURL
Okumura, Makoto; Fukao, Takeshi A new structure-preserving scheme with the staggered space mesh for the Cahn-Hilliard equation under a dynamic boundary condition. (English) Zbl 07470529 Adv. Math. Sci. Appl. 30, No. 2, 347-376 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{M. Okumura} and \textit{T. Fukao}, Adv. Math. Sci. Appl. 30, No. 2, 347--376 (2021; Zbl 07470529) Full Text: Link OpenURL
Abdel-Rehim, E. A.; Hassan, R. M.; El-Sayed, A. M. A. Markov and non-Markov hereditary processes in asexual and random mating sexual populations. (English) Zbl 07458990 J. Fract. Calc. Appl. 12, No. 3, Article 2, 14 p. (2021). MSC: 60G05 60G10 60H30 60H35 60J10 60J20 60J60 60J75 60J85 60J80 65M06 35Q84 35Q92 65C20 PDF BibTeX XML Cite \textit{E. A. Abdel-Rehim} et al., J. Fract. Calc. Appl. 12, No. 3, Article 2, 14 p. (2021; Zbl 07458990) Full Text: Link OpenURL
Pandey, Pramod Kumar Nonstandard finite difference method for the approximate solution of two-point fourth order boundary value problems in ODEs. (English) Zbl 1477.65115 Appl. Sci. 23, 87-98 (2021). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{P. K. Pandey}, Appl. Sci. 23, 87--98 (2021; Zbl 1477.65115) Full Text: Link OpenURL
Li, Shu-Jie Efficient steady flow computations with exponential multigrid methods. (English) Zbl 07452113 Garanzha, Vladimir A. (ed.) et al., Numerical geometry, grid generation and scientific computing. Proceedings of the 10th international conference, NUMGRID 2020 / Delaunay 130, celebrating the 130th anniversary of Boris Delaunay, Moscow, Russia, November 25–27, 2020. Cham: Springer. Lect. Notes Comput. Sci. Eng. 143, 375-390 (2021). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M60 65M06 65M50 65L06 65M12 65M15 65F10 65F08 PDF BibTeX XML Cite \textit{S.-J. Li}, Lect. Notes Comput. Sci. Eng. 143, 375--390 (2021; Zbl 07452113) Full Text: DOI OpenURL
Destyl, Edès; Laminie, Jacques; Nuiro, Paul; Poullet, Pascal Numerical simulations of parity-time symmetric nonlinear Schrödinger equations in critical case. (English) Zbl 07451795 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2805-2821 (2021). MSC: 65-XX 35B40 35B44 35J10 35Q41 65M06 68N15 PDF BibTeX XML Cite \textit{E. Destyl} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2805--2821 (2021; Zbl 07451795) Full Text: DOI OpenURL
Mason, Sophie Lauren; Meyer, John Christopher; Needham, David John The development of a wax layer on the interior wall of a circular pipe transporting heated oil: the effects of temperature-dependent wax conductivity. (English) Zbl 1480.76142 J. Eng. Math. 131, Paper No. 7, 30 p. (2021). MSC: 76T99 76M45 76M20 80A22 80A19 35Q35 PDF BibTeX XML Cite \textit{S. L. Mason} et al., J. Eng. Math. 131, Paper No. 7, 30 p. (2021; Zbl 1480.76142) Full Text: DOI arXiv OpenURL
Mukhopadhyay, Subrata; Mandal, Mani Shankar; Mukhopadhyay, Swati Heat transfer in pulsatile blood flow obeying Cross viscosity model through an artery with aneurysm. (English) Zbl 1480.76170 J. Eng. Math. 131, Paper No. 6, 16 p. (2021). MSC: 76Z05 76A05 76M20 80A19 92C35 PDF BibTeX XML Cite \textit{S. Mukhopadhyay} et al., J. Eng. Math. 131, Paper No. 6, 16 p. (2021; Zbl 1480.76170) Full Text: DOI OpenURL
Raza, Akmal; Khan, Arshad; Ahmad, Khalil A new approach for solving partial differential equations based on finite-difference and Haar wavelet methods. (English) Zbl 07450592 Jordan J. Math. Stat. 14, No. 2, 307-334 (2021). MSC: 65D07 65M12 65M99 65N35 65N55 65L10 65L12 PDF BibTeX XML Cite \textit{A. Raza} et al., Jordan J. Math. Stat. 14, No. 2, 307--334 (2021; Zbl 07450592) Full Text: Link OpenURL
Choi, Yongho; Li, Yibao; Lee, Chaeyoung; Kim, Hyundong; Kim, Junseok Explicit hybrid numerical method for the Allen-Cahn type equations on curved surfaces. (English) Zbl 07448862 Numer. Math., Theory Methods Appl. 14, No. 3, 797-810 (2021). MSC: 65M06 65M22 35K57 PDF BibTeX XML Cite \textit{Y. Choi} et al., Numer. Math., Theory Methods Appl. 14, No. 3, 797--810 (2021; Zbl 07448862) Full Text: DOI OpenURL
Li, Dongfang; Sun, Weiwei; Wu, Chengda A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. (English) Zbl 07448844 Numer. Math., Theory Methods Appl. 14, No. 2, 355-376 (2021). MSC: 65M06 26A33 35R11 PDF BibTeX XML Cite \textit{D. Li} et al., Numer. Math., Theory Methods Appl. 14, No. 2, 355--376 (2021; Zbl 07448844) Full Text: DOI OpenURL
Yang, Jiming Uniformly convergent upwind difference approximation for a singularly perturbed boundary value problem. (Chinese. English summary) Zbl 07448162 Acta Math. Appl. Sin. 44, No. 2, 269-278 (2021). MSC: 65L12 65L10 65L11 PDF BibTeX XML Cite \textit{J. Yang}, Acta Math. Appl. Sin. 44, No. 2, 269--278 (2021; Zbl 07448162) OpenURL
Soleymani, Fazlollah; Zhu, Shengfeng On a high-order Gaussian radial basis function generated Hermite finite difference method and its application. (English) Zbl 07444708 Calcolo 58, No. 4, Paper No. 50, 22 p. (2021). MSC: 65Mxx 65B99 65M22 41A25 PDF BibTeX XML Cite \textit{F. Soleymani} and \textit{S. Zhu}, Calcolo 58, No. 4, Paper No. 50, 22 p. (2021; Zbl 07444708) Full Text: DOI OpenURL
Buranay, Suzan C.; Farinola, Lawrence A. Six point implicit methods for the approximation of the derivatives of the solution of first type boundary value problem for heat equation. (English) Zbl 1481.65124 Ashyralyev, Allaberen (ed.) et al., Functional analysis in interdisciplinary applications II. Collected papers based on the presentations at the mini-symposium, held as part of the fourth international conference on analysis and applied mathematics, ICAAM, September 6–9, 2018. Cham: Springer. Springer Proc. Math. Stat. 351, 39-62 (2021). MSC: 65M06 65M12 65M22 35K05 PDF BibTeX XML Cite \textit{S. C. Buranay} and \textit{L. A. Farinola}, Springer Proc. Math. Stat. 351, 39--62 (2021; Zbl 1481.65124) Full Text: DOI OpenURL
Bakanov, Galitdin B. Investigation of finite-difference analogue of the integral geometry problem with a weight function. (English) Zbl 07444026 Ashyralyev, Allaberen (ed.) et al., Functional analysis in interdisciplinary applications II. Collected papers based on the presentations at the mini-symposium, held as part of the fourth international conference on analysis and applied mathematics, ICAAM, September 6–9, 2018. Cham: Springer. Springer Proc. Math. Stat. 351, 29-38 (2021). MSC: 65-XX 30-XX PDF BibTeX XML Cite \textit{G. B. Bakanov}, Springer Proc. Math. Stat. 351, 29--38 (2021; Zbl 07444026) Full Text: DOI OpenURL
Xu, Qiuyan; Liu, Zhiyong A class of new successive permutation iterative algorithms for diffusion equation. (English) Zbl 1481.65166 J. Difference Equ. Appl. 27, No. 9, 1355-1372 (2021). MSC: 65M06 65M22 65M12 PDF BibTeX XML Cite \textit{Q. Xu} and \textit{Z. Liu}, J. Difference Equ. Appl. 27, No. 9, 1355--1372 (2021; Zbl 1481.65166) Full Text: DOI OpenURL
Appadu, Appanah Rao; Olatunji Tijani, Yusuf; Aderogba, Adebayo Abiodun On the performance of some NSFD methods for a 2-D generalized Burgers-Huxley equation. (English) Zbl 1481.65120 J. Difference Equ. Appl. 27, No. 11, 1537-1573 (2021). MSC: 65M06 65M22 65M15 35Q53 PDF BibTeX XML Cite \textit{A. R. Appadu} et al., J. Difference Equ. Appl. 27, No. 11, 1537--1573 (2021; Zbl 1481.65120) Full Text: DOI OpenURL
Rao, S. Chandra Sekhara; Chaturvedi, Abhay Kumar Pointwise error estimates for a system of two singularly perturbed time-dependent semilinear reaction-diffusion equations. (English) Zbl 1481.65152 Math. Methods Appl. Sci. 44, No. 17, 13287-13325 (2021). MSC: 65M06 65M12 65M15 65M22 35B25 35K58 35K57 PDF BibTeX XML Cite \textit{S. C. S. Rao} and \textit{A. K. Chaturvedi}, Math. Methods Appl. Sci. 44, No. 17, 13287--13325 (2021; Zbl 1481.65152) Full Text: DOI OpenURL
Kumar, Vivek; Leugering, Günter Singularly perturbed reaction-diffusion problems on a \(k\)-star graph. (English) Zbl 07441994 Math. Methods Appl. Sci. 44, No. 18, 14874-14891 (2021). MSC: 65L11 65L12 65L70 PDF BibTeX XML Cite \textit{V. Kumar} and \textit{G. Leugering}, Math. Methods Appl. Sci. 44, No. 18, 14874--14891 (2021; Zbl 07441994) Full Text: DOI OpenURL
Bao, Xuelian; Zhang, Hui Numerical approximations and error analysis of the Cahn-Hilliard equation with dynamic boundary conditions. (English) Zbl 1476.65160 Commun. Math. Sci. 19, No. 3, 663-685 (2021). MSC: 65M06 65M12 65M22 65N12 PDF BibTeX XML Cite \textit{X. Bao} and \textit{H. Zhang}, Commun. Math. Sci. 19, No. 3, 663--685 (2021; Zbl 1476.65160) Full Text: DOI arXiv OpenURL
Yokus, Asif; Yavuz, Mehmet Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation. (English) Zbl 07440431 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2591-2606 (2021). MSC: 65Mxx 26A33 35R11 65M06 PDF BibTeX XML Cite \textit{A. Yokus} and \textit{M. Yavuz}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2591--2606 (2021; Zbl 07440431) Full Text: DOI OpenURL
Tao, Zhen-Zhen; Sun, Bing A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. (English) Zbl 1478.49026 Electron Res. Arch. 29, No. 5, 3429-3447 (2021). MSC: 49L25 49M41 49N35 65D05 35F21 35D40 PDF BibTeX XML Cite \textit{Z.-Z. Tao} and \textit{B. Sun}, Electron Res. Arch. 29, No. 5, 3429--3447 (2021; Zbl 1478.49026) Full Text: DOI OpenURL
Lu, Xin; Fang, Zhi-Wei; Sun, Hai-Wei Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations. (English) Zbl 1475.65015 J. Appl. Math. Comput. 66, No. 1-2, 673-700 (2021). MSC: 65F08 65F10 65M06 65M22 PDF BibTeX XML Cite \textit{X. Lu} et al., J. Appl. Math. Comput. 66, No. 1--2, 673--700 (2021; Zbl 1475.65015) Full Text: DOI OpenURL
Singh, Maneesh Kumar; Singh, Gautam; Natesan, Srinivasan A unified study on superconvergence analysis of Galerkin FEM for singularly perturbed systems of multiscale nature. (English) Zbl 1475.65053 J. Appl. Math. Comput. 66, No. 1-2, 221-243 (2021). MSC: 65L06 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. K. Singh} et al., J. Appl. Math. Comput. 66, No. 1--2, 221--243 (2021; Zbl 1475.65053) Full Text: DOI OpenURL