×

Intersection form, laminations and currents on free groups. (English) Zbl 1242.20052

Summary: Let \(F\) be a free group of rank \(N\geq 2\), let \(\mu\) be a geodesic current on \(F\) and let \(T\) be an \(\mathbb R\)-tree with a very small isometric action of \(F\). We prove that the geometric intersection number \(\langle T,\mu\rangle\) is equal to zero if and only if the support of \(\mu\) is contained in the dual algebraic lamination \(L^2(T)\) of \(T\). Applying this result, we obtain a generalization of a theorem of S. Francaviglia [Trans. Am. Math. Soc. 361, No. 1, 161-176 (2009; Zbl 1166.20032)] regarding length spectrum compactness for currents with full support. We use the main result to obtain “unique ergodicity” type properties for the attracting and repelling fixed points of atoroidal iwip elements of \(\text{Out}(F)\) when acting both on the compactified outer space and on the projectivized space of currents. We also show that the sum of the translation length functions of any two “sufficiently transverse” very small \(F\)-trees is bilipschitz equivalent to the translation length function of an interior point of the outer space. As another application, we define the notion of a filling element in \(F\) and prove that filling elements are “nearly generic” in \(F\). We also apply our results to the notion of bounded translation equivalence in free groups.

MSC:

20F65 Geometric group theory
20E05 Free nonabelian groups
20F28 Automorphism groups of groups
20E08 Groups acting on trees
57M07 Topological methods in group theory
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37B10 Symbolic dynamics
37E25 Dynamical systems involving maps of trees and graphs

Citations:

Zbl 1166.20032
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bass H. (1993) Covering theory for graphs of groups. J. Pure Appl. Algebra 89(1-2): 3–47 · Zbl 0805.57001 · doi:10.1016/0022-4049(93)90085-8
[2] Bestvina M., Feighn M. (2000) The topology at infinity of Out(F n ). Invent. Math. 140(3): 651–692 · Zbl 0954.55011 · doi:10.1007/s002220000068
[3] M. Bestvina, M. Feighn, A hyperbolic Out(F n ) complex, preprint (2008); arXiv(0808.3730 · Zbl 1190.20017
[4] M. Bestvina, M. Feighn, Outer limits, preprint (1993); http://andromeda.rutgers.edu/\(\sim\)feighn/papers/outer.pdf
[5] Bestvina M., Feighn M., Handel M. (1997) Laminations, trees, and irreducible automorphisms of free groups. Geom. Funct. Anal. 7(2): 215–244 · Zbl 0884.57002 · doi:10.1007/PL00001618
[6] Bestvina M., Feighn M., Handel M. (2000) The Tits alternative for Out(F n ). I. Dynamics of exponentially-growing automorphisms. Ann. of Math. (2) 151(2): 517–623 · Zbl 0984.20025 · doi:10.2307/121043
[7] Bestvina M., Feighn M., Handel M. (2005) The Tits alternative for Out(F n ). II. A Kolchin type theorem. Ann. of Math. (2) 161(1): 1–59 · Zbl 1139.20026 · doi:10.4007/annals.2005.161.1
[8] Bestvina M., Handel M. (1992) Train tracks and automorphisms of free groups. Ann. of Math. (2) 135(1): 1–51 · Zbl 0757.57004 · doi:10.2307/2946562
[9] Bonahon F. (1986) Bouts des variétés hyperboliques de dimension 3. Ann. of Math. (2) 124(1): 71–158 · Zbl 0671.57008 · doi:10.2307/1971388
[10] Bonahon F. (1988) The geometry of Teichmüller space via geodesic currents. Invent. Math. 92(1): 139–162 · Zbl 0653.32022 · doi:10.1007/BF01393996
[11] F. Bonahon, Geodesic currents on negatively curved groups, Arboreal Group Theory (Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ., 19, Springer, New York (1991), 143–168. · Zbl 0772.57004
[12] D. Calegari, K. Fujiwara, Combable functions, quasimorphisms, and the central limit theorem, preprint; http://arxiv.org/abs/0805.1755 · Zbl 1217.37025
[13] Cohen M., Lustig M. (1995) Very small group actions on R-trees and Dehn twist automorphisms. Topology 34(3): 575–617 · Zbl 0844.20018 · doi:10.1016/0040-9383(94)00038-M
[14] Cooper D. (1987) Automorphisms of free groups have finitely generated fixed point sets. J. Algebra 111(2): 453–456 · Zbl 0628.20029 · doi:10.1016/0021-8693(87)90229-8
[15] Coulbois T., Hilion A., Lustig M. (2008) \({\mathbb{R}}\) -trees and laminations for free groups I: Algebraic laminations. J. Lond. Math. Soc. (2) 78(3): 723–736 · Zbl 1197.20019 · doi:10.1112/jlms/jdn052
[16] Coulbois T., Hilion A., Lustig M. (2008) \({\mathbb{R}}\) -trees and laminations for free groups II: The dual lamination of an \({\mathbb{R}}\) -tree. J. Lond. Math. Soc. (2) 78(3): 737–754 · Zbl 1198.20023 · doi:10.1112/jlms/jdn053
[17] Coulbois T., Hilion A., Lustig M. (2008) \({\mathbb{R}}\) -trees and laminations for free groups III: Currents and dual \({\mathbb{R}}\) -tree metrics. J. Lond. Math. Soc. 78(3): 755–766 · Zbl 1200.20018 · doi:10.1112/jlms/jdn054
[18] Culler M., Vogtmann K. (1986) Moduli of graphs and automorphisms of free groups. Invent. Math. 84(1): 91–119 · Zbl 0589.20022 · doi:10.1007/BF01388734
[19] Gaboriau D., Jaeger A., Levitt G., Lustig M. (1998) An index for counting fixed points of automorphisms of free groups. Duke Math. J. 93(3): 425–452 · Zbl 0946.20010 · doi:10.1215/S0012-7094-98-09314-0
[20] E. Ghys, P. de la Harpe (eds.), Sur les groupes hyperboliques d’aprés Mikhail Gromov, Birkhäuser, Progress in Mathematics 83 (1990).
[21] Guirardel V. (1998) Approximations of stable actions on R-trees. Comment. Math. Helv. 73(1): 89–121 · Zbl 0979.20026 · doi:10.1007/s000140050047
[22] Francaviglia S. (2009) Geodesic currents and length compactness for automorphisms of free groups. Trans. Amer. Math. Soc. 361(1): 161–176 · Zbl 1166.20032 · doi:10.1090/S0002-9947-08-04420-6
[23] U. Hamenstädt, subgroups of Out(F n ), a talk at the workshop ”Discrete Groups and Geometric Structures”, Kortrijk, Belgium, May 2008.
[24] Kaimanovich V., Kapovich I., Schupp P. (2007) The subadditive ergodic theorem and generic stretching factors for free group automorphisms. Israel J. Math. 157: 1–46 · Zbl 1173.20031 · doi:10.1007/s11856-006-0001-7
[25] Kapovich I. (1997) Quasiconvexity and amalgams. Int. J. Alg. Comput. 7(6): 771–811 · Zbl 0912.20031 · doi:10.1142/S0218196797000344
[26] Kapovich I. (2001) The combination theorem and quasiconvexity. Intern. J. Alg. Comput. 11(2): 185–216 · Zbl 1025.20028 · doi:10.1142/S0218196701000553
[27] Kapovich I. (2005) The frequency space of a free group. Internat. J. Alg. Comput. 15(5-6): 939–969 · Zbl 1110.20031 · doi:10.1142/S0218196705002700
[28] I. Kapovich, Currents on free groups, Topological and Asymptotic Aspects of Group Theory (R. Grigorchuk, M. Mihalik, M. Sapir, Z. Sunik, eds.), AMS Contemporary Mathematics Series, 394 (2006), 149–176. · Zbl 1110.20034
[29] Kapovich I. (2007) Clusters, currents and Whitehead’s algorithm. Experimental Mathematics 16(1): 67–76 · Zbl 1158.20014 · doi:10.1080/10586458.2007.10128990
[30] Kapovich I., Levitt G., Schupp P., Shpilrain V. (2007) Translation equivalence in free groups. Transact. Amer. Math. Soc. 359(4): 1527–1546 · Zbl 1119.20037 · doi:10.1090/S0002-9947-06-03929-8
[31] Kapovich I., Lustig M. (2007) The actions of Out(F k ) on the boundary of outer space and on the space of currents: minimal sets and equivariant incompatibility. Ergodic Theory Dynam. Systems 27(3): 827–847 · Zbl 1127.20025 · doi:10.1017/S0143385706001015
[32] Kapovich I., Lustig M. (2009) Geometric intersection number and analogues of the curve complex for free groups. Geom. Topol. 13: 1805–1833 · Zbl 1194.20046 · doi:10.2140/gt.2009.13.1805
[33] Kapovich I., Myasnikov A. (2002) Stallings foldings and the subgroup structure of free groups. J. Algebra 248(2): 608–668 · Zbl 1001.20015 · doi:10.1006/jabr.2001.9033
[34] Kapovich I., Nagnibeda T. (2007) The Patterson–Sullivan embedding and minimal volume entropy for outer space. Geom. Funct. Anal. 17(4): 1201–1236 · Zbl 1135.20031 · doi:10.1007/s00039-007-0621-z
[35] M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhäuser, 2001. · Zbl 0958.57001
[36] Leininger C.J. (2003) Equivalent curves in surfaces. Geom. Dedicata 102: 151–177 · Zbl 1037.57013 · doi:10.1023/B:GEOM.0000006579.44245.92
[37] Lee D. (2006) Translation equivalent elements in free groups. J. Group Theory 9(6): 809–814 · Zbl 1112.20023 · doi:10.1515/JGT.2006.052
[38] Levitt G., Lustig M. (2003) Irreducible automorphisms of F n have north-south dynamics on compactified outer space. J. Inst. Math. Jussieu 2(1): 59–72 · Zbl 1034.20038 · doi:10.1017/S1474748003000033
[39] M. Lustig, A generalized intersection form for free groups, preprint (2004).
[40] R. Martin, Non-Uniquely Ergodic Foliations of Thin Type, Measured Currents and Automorphisms of Free Groups, PhD Thesis, 1995.
[41] Paulin F. (1989) The Gromov topology on R-trees. Topology Appl. 32(3): 197–221 · Zbl 0675.20033 · doi:10.1016/0166-8641(89)90029-1
[42] Serre J.-P. (1980) Trees. Springer-Verlag, Berlin-New York
[43] Sharp R. (2010) Distortion and entropy for automorphisms of free groups. Discr. Contin. Dynam. Syst. 26(1): 347–363 · Zbl 1220.37018 · doi:10.3934/dcds.2010.26.347
[44] R. Skora, Deformations of length functions in groups, preprint, Columbia University (1989).
[45] M. Steiner, Gluing Data and Group Actions on \({\mathbb{R}}\) -Trees, Thesis, Columbia University (1988).
[46] Vogtmann K. (2002) Automorphisms of free groups and outer space. Geometriae Dedicata 94: 1–31 · Zbl 1017.20035 · doi:10.1023/A:1020973910646
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.