×

Dynamical analysis and chaos control in a heterogeneous Kopel duopoly game. (English) Zbl 1371.91127

Summary: A dynamic of a nonlinear Kopel duopoly game with heterogeneous players is presented. By assuming two heterogeneous players where one player use naive expectation whereas the other employs a technique of adaptive. The stability conditions of equilibrium points are analyzed. Numerical simulations are used to show bifurcation diagrams, phase portraits and sensitive dependence on initial conditions. The chaotic behavior of the game has been controlled by using feedback control method.

MSC:

91B55 Economic dynamics
37N40 Dynamical systems in optimization and economics
91B54 Special types of economic markets (including Cournot, Bertrand)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. N. Agiza, On the analysis of stability, bifurcation, chaos and chaos control of Kopel map, Chaos, Sol. & Frac.,10 (1999), 1909-1916. · Zbl 0955.37022 · doi:10.1016/S0960-0779(98)00210-0
[2] H. N. Agiza, A. S. Hegazi and A. A. Elsadany, The dynamics of Bowley’s model with bounded rationality, Chaos, Sol. & Frac.,12 (2001), 1705-1717. · Zbl 1036.91004 · doi:10.1016/S0960-0779(00)00021-7
[3] H. N. Agiza, A. S. Hegazi and A. A. Elsadany, Complex dynamics and synchronization of a duopoly game with bounded rationality, Math. Comp. Simu.,58 (2002), 133-146. · Zbl 1002.91010 · doi:10.1016/S0378-4754(01)00347-0
[4] H. N. Agiza and A. A. Elsadany, Nonlinear dynamics in the Cournot duopoly game with heterogeneous players, Phys. A,320 (2003), 512-524. · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[5] H. N. Agiza and A. A. Elsadany, Chaotic dynamics in nonlinear duopoly game with heterogeneous players, J. Appl. Math. Comp.,149 (2004), 843-860. · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[6] J. S. Canovas and S. Paredes, On the control of some duopoly games, Math. Comp. Model.,52 (2010), 1110-1115. · Zbl 1205.91112 · doi:10.1016/j.mcm.2010.03.009
[7] A. Cournot, Researches into the mathematical principles of the theory of wealth, (English Translation), Irwin Paper back classics in Economics (1963 chapter VII). · JFM 28.0211.07
[8] S. Elaydi, An introduction to difference equations, Third Edition, ISBN 0-387-23059-9, Springer (2005). · Zbl 1071.39001
[9] W. Govaerts and R. Khoshsiar Ghaziani, Stable cycles in a Cournot duopoly model of Kopel, J. Comp. Appl. Math., 218 (2008), 247-258. · Zbl 1151.91458 · doi:10.1016/j.cam.2007.01.012
[10] R. A. Holmgren, A first course in discrete dynamical systems, Springer-Verlag, ISBN 0-387-94208-4, New York, (1994). · Zbl 0797.58001 · doi:10.1007/978-1-4684-0222-3
[11] Jason Barr and Francesco Saraceno, Cournot competition, organization and learning, J. econ. dyna. cont., 29 (2005), 277-295. · Zbl 1202.91175 · doi:10.1016/j.jedc.2003.07.003
[12] Jian-guo Du, Yue-qian Fan, Zhao-han Sheng and Yun-zhang Hou, Dynamics analysis and chaos control of a duopoly game with heterogeneous players and output limiter, Econ. Model., 33 (2013), 507-516. · doi:10.1016/j.econmod.2013.04.045
[13] E. I. Jury and J. Blanchard, A stability test for linear discrete systems in table form, Proc. Inst. Radio Eng., 49 (1961), 1947-948.
[14] Julian Wright, Access pricing under competition: an application to cellular networks, J. Indu. Econ., 50 (2002), 289-315. · doi:10.1111/1467-6451.00178
[15] M. Kopel, Simple and complex adjustment dynamics in Cournot duopoly models, Chaos, Sol. & Frac.,7 (1996), 2031-2048. · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7
[16] Jentoft, L.; Li, Y., Stabilizing the Henon map with the OGY algorithm (2008)
[17] Liang Chen and Guanrong Chen, Controlling chaos in an economic model, Phys. A,374 (2007), 349-358. · doi:10.1016/j.physa.2006.07.022
[18] H. W. Lorenz, Nonlinear dynamical economics and chaotic motion, Springer-Verlag, Berlin, (1993). · Zbl 0841.90036 · doi:10.1007/978-3-642-78324-1
[19] Luciano Fanti, Luca Gori and Mauro Sodini, Nonlinear dynamics in a Cournot duopoly with relative profit delegation, Chaos, Sol. & Frac., 45 (2012), 1469-1478. · Zbl 1258.91040 · doi:10.1016/j.chaos.2012.08.008
[20] Luciano Fanti and Luca Gori, The dynamics of a differentiated duopoly with quantity competition, Econ. Model., 29 (2012), 421-427. · doi:10.1016/j.econmod.2011.11.010
[21] Luciano Fanti, Luca Gori, Cristiana Mammana and Elisabetta Michetti, The dynamics of a Bertrand duopoly with differentiated products: Synchronization, intermittency and global dynamics, Chaos, Sol. & Frac., 52 (2013), 73-86. · Zbl 1323.37052 · doi:10.1016/j.chaos.2013.04.002
[22] A. Medio, Chaotic dynamics. Theory and applications to economics, Cambridge: Cambridge University press, (1992). · Zbl 0783.58002
[23] Mingshu Peng, Zhonghao Jiang, Xiaoxia Jiang, Jiping Hu and Youli Qu, Multistability and complex dynamics in a simple discrete economic model, Chaos, Sol. & Frac., 41 (2009), 671-687. · Zbl 1198.91114 · doi:10.1016/j.chaos.2008.02.040
[24] Ott, Edward and Grebogi, Celso and James A. Yorke, Controlling chaos, Phys. Rev. Lett.,64 (1990), 1196-1199. · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[25] Russu, P., Controlling complex dynamics in a protected area discrete-time model (2012) · Zbl 1244.91061
[26] T. Puu, Attractors, bifurcation and chaos: Nonlinear phenomena in economics, chapter (10) page (430), Springer-Verlag (2000). · Zbl 0942.91001 · doi:10.1007/978-3-662-04094-2
[27] Rong Hu and Hong-shan Xia, Chaotic dynamics in differentiated Bertrand model with heterogeneous players, Grey Syst. Theo. Appl., 2 (2011), 129-140. · doi:10.1108/20439371211260108
[28] Tianshu Wang, Xingyuan Wang and Mingjun Wang, Chaotic control of Hénon map with feedback and nonfeedback methods, Comm. Nonl. Sci Numer. Simul., 16 (2011), 3367-3374. · Zbl 1221.93119 · doi:10.1016/j.cnsns.2010.11.014
[29] M. T. Yassen and H. N. Agiza, Analysis of a duopoly game with bounded rationality, Appl. Math. Comput.,138 (2003), 387-402. · Zbl 1102.91021
[30] Yueqian Fan, Tao Xie and Jianguo Du, Complex dynamics of duopoly game with heterogeneous players: A further analysis of the output model, Appl. Math. Comp., 218 (2012), 7829-7838. · Zbl 1237.91168 · doi:10.1016/j.amc.2012.02.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.