Al-Homidan, Suliman; Ali, Bashir; Suleiman, Yusuf I. Generalized split feasibility problem for multi-valued Bregman quasi-nonexpansive mappings in Banach spaces. (English) Zbl 07310827 Appl. Numer. Math. 161, 437-451 (2021). MSC: 47J 65J PDF BibTeX XML Cite \textit{S. Al-Homidan} et al., Appl. Numer. Math. 161, 437--451 (2021; Zbl 07310827) Full Text: DOI
Lourenço, Bruno F. Amenable cones: error bounds without constraint qualifications. (English) Zbl 07310573 Math. Program. 186, No. 1-2 (A), 1-48 (2021). MSC: 90C31 65G99 17C55 PDF BibTeX XML Cite \textit{B. F. Lourenço}, Math. Program. 186, No. 1--2 (A), 1--48 (2021; Zbl 07310573) Full Text: DOI
Berinde, Vasile; Păcurar, Mădălina Kannan’s fixed point approximation for solving split feasibility and variational inequality problems. (English) Zbl 07305140 J. Comput. Appl. Math. 386, Article ID 113217, 10 p. (2021). MSC: 47H10 47H09 54H25 47J25 49J40 PDF BibTeX XML Cite \textit{V. Berinde} and \textit{M. Păcurar}, J. Comput. Appl. Math. 386, Article ID 113217, 10 p. (2021; Zbl 07305140) Full Text: DOI
Shehu, Yekini; Dong, Qiao-Li; Liu, Lu-Lu Global and linear convergence of alternated inertial methods for split feasibility problems. (English) Zbl 07302477 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 53, 26 p. (2021). MSC: 47H05 47J20 47J25 65K15 90C25 PDF BibTeX XML Cite \textit{Y. Shehu} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 53, 26 p. (2021; Zbl 07302477) Full Text: DOI
Guan, Jin-Lin A new iterative algorithm for the multiple-sets split feasibility problem and the split equality fixed point problem. (English) Zbl 07302082 Mediterr. J. Math. 18, No. 1, Paper No. 19, 24 p. (2021). MSC: 47J25 49J53 49M37 90C25 PDF BibTeX XML Cite \textit{J.-L. Guan}, Mediterr. J. Math. 18, No. 1, Paper No. 19, 24 p. (2021; Zbl 07302082) Full Text: DOI
Thong, Duong Viet; Dung, Vu Tien; Cho, Yeol Je A new strong convergence for solving split variational inclusion problems. (English) Zbl 07300814 Numer. Algorithms 86, No. 2, 565-591 (2021). MSC: 65J15 47H09 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Numer. Algorithms 86, No. 2, 565--591 (2021; Zbl 07300814) Full Text: DOI
Mahalik, K.; Nahak, C. Solvability of implicit semidefinite and implicit copositive complementarity problems. (English) Zbl 07241403 J. Comput. Appl. Math. 382, Article ID 113073, 10 p. (2021). MSC: 90C33 90C22 PDF BibTeX XML Cite \textit{K. Mahalik} and \textit{C. Nahak}, J. Comput. Appl. Math. 382, Article ID 113073, 10 p. (2021; Zbl 07241403) Full Text: DOI
Luo, Xue-Ping P-strict feasibility of equilibrium problems in reflexive Banach spaces. (English) Zbl 07313893 Pac. J. Optim. 16, No. 1, 117-128 (2020). MSC: 47H05 49J40 PDF BibTeX XML Cite \textit{X.-P. Luo}, Pac. J. Optim. 16, No. 1, 117--128 (2020; Zbl 07313893) Full Text: Link
Ramírez C., Héctor; Roshchina, Vera Refining the partition for multifold conic optimization problems. (English) Zbl 07313445 Optimization 69, No. 11, 2489-2507 (2020). MSC: 90C46 90C22 90C25 PDF BibTeX XML Cite \textit{H. Ramírez C.} and \textit{V. Roshchina}, Optimization 69, No. 11, 2489--2507 (2020; Zbl 07313445) Full Text: DOI
Reich, Simeon; Truong, Minh Tuyen; Mai, Thi Ngoc Ha The split feasibility problem with multiple output sets in Hilbert spaces. (English) Zbl 07311820 Optim. Lett. 14, No. 8, 2335-2353 (2020). MSC: 90C PDF BibTeX XML Cite \textit{S. Reich} et al., Optim. Lett. 14, No. 8, 2335--2353 (2020; Zbl 07311820) Full Text: DOI
Waki, Hayato; Sebe, Noboru Characterization of the dual problem of linear matrix inequality for H-infinity output feedback control problem via facial reduction. (English) Zbl 1452.93008 Math. Control Signals Syst. 32, No. 3, 361-384 (2020). MSC: 93B36 93B52 PDF BibTeX XML Cite \textit{H. Waki} and \textit{N. Sebe}, Math. Control Signals Syst. 32, No. 3, 361--384 (2020; Zbl 1452.93008) Full Text: DOI
Guo, Ke; Zhu, Chunrong Inexact averaged projection algorithm for nonconvex multiple-set split feasibility problems. (English) Zbl 07295448 J. Math. Res. Appl. 40, No. 5, 534-542 (2020). MSC: 90C26 65K10 PDF BibTeX XML Cite \textit{K. Guo} and \textit{C. Zhu}, J. Math. Res. Appl. 40, No. 5, 534--542 (2020; Zbl 07295448) Full Text: DOI
Aghaei, Shahram; Daeichian, Abolghasem; Puig, Vicenç Hierarchical decentralized reference governor using dynamic constraint tightening for constrained cascade systems. (English) Zbl 07289759 J. Franklin Inst. 357, No. 17, 12495-12517 (2020). MSC: 93A13 93A14 93D05 PDF BibTeX XML Cite \textit{S. Aghaei} et al., J. Franklin Inst. 357, No. 17, 12495--12517 (2020; Zbl 07289759) Full Text: DOI
Yu, Hai; Wang, Fenghui Modified relaxed CQ algorithms for split feasibility and split equality problems in Hilbert spaces. (English) Zbl 07285163 Fixed Point Theory 21, No. 2, 819-832 (2020). MSC: 47J25 47J20 47H10 49N45 65J15 PDF BibTeX XML Cite \textit{H. Yu} and \textit{F. Wang}, Fixed Point Theory 21, No. 2, 819--832 (2020; Zbl 07285163) Full Text: Link
Wang, Yuanheng; Wu, Xiuping; Lu, Lirong A modified iterative algorithm for the split feasibility problem. (Chinese. English summary) Zbl 07267225 J. Zhejiang Norm. Univ., Nat. Sci. 43, No. 2, 127-133 (2020). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Zhejiang Norm. Univ., Nat. Sci. 43, No. 2, 127--133 (2020; Zbl 07267225) Full Text: DOI
Fu, Yuanmin; Zhu, Lijun; He, Long Two hybrid alternating CQ-algorithms for solving the linear least square problem. (Chinese. English summary) Zbl 07267083 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 2, 202-211 (2020). MSC: 65J10 PDF BibTeX XML Cite \textit{Y. Fu} et al., J. Sichuan Norm. Univ., Nat. Sci. 43, No. 2, 202--211 (2020; Zbl 07267083) Full Text: DOI
Sokolinsky, L. B.; Sokolinskaya, I. M. Scalable parallel algorithm for solving non-stationary systems of linear inequalities. (English) Zbl 1450.65055 Lobachevskii J. Math. 41, No. 8, 1571-1580 (2020). MSC: 65K05 65K10 65Y05 65Y10 PDF BibTeX XML Cite \textit{L. B. Sokolinsky} and \textit{I. M. Sokolinskaya}, Lobachevskii J. Math. 41, No. 8, 1571--1580 (2020; Zbl 1450.65055) Full Text: DOI
Homaeinezhad, M. R.; Shahhosseini, A. High-performance modeling and discrete-time sliding mode control of uncertain non-commensurate linear time invariant MIMO fractional order dynamic systems. (English) Zbl 1453.93038 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105200, 19 p. (2020). Reviewer: Tullio Zolezzi (Genova) MSC: 93B12 93C55 93C35 93C15 26A33 PDF BibTeX XML Cite \textit{M. R. Homaeinezhad} and \textit{A. Shahhosseini}, Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105200, 19 p. (2020; Zbl 1453.93038) Full Text: DOI
Wang, Jueyu; Gu, Chao; Zhu, Detong A new filter algorithm for a system of nonlinear equations. (English) Zbl 07261312 Comput. Appl. Math. 39, No. 3, Paper No. 245, 25 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{J. Wang} et al., Comput. Appl. Math. 39, No. 3, Paper No. 245, 25 p. (2020; Zbl 07261312) Full Text: DOI
Chen, Chen; Pong, Ting Kei; Tan, Lulin; Zeng, Liaoyuan A difference-of-convex approach for split feasibility with applications to matrix factorizations and outlier detection. (English) Zbl 1450.90031 J. Glob. Optim. 78, No. 1, 107-136 (2020). MSC: 90C26 PDF BibTeX XML Cite \textit{C. Chen} et al., J. Glob. Optim. 78, No. 1, 107--136 (2020; Zbl 1450.90031) Full Text: DOI
Cegielski, Andrzej; Gibali, Aviv; Reich, Simeon; Zalas, Rafał Outer approximation methods for solving variational inequalities defined over the solution set of a split convex feasibility problem. (English) Zbl 1446.47062 Numer. Funct. Anal. Optim. 41, No. 9, 1089-1108 (2020). MSC: 47J25 47H09 47J20 65K15 PDF BibTeX XML Cite \textit{A. Cegielski} et al., Numer. Funct. Anal. Optim. 41, No. 9, 1089--1108 (2020; Zbl 1446.47062) Full Text: DOI
Liu, Rui Peng On feasibility of sample average approximation solutions. (English) Zbl 1448.90064 SIAM J. Optim. 30, No. 3, 2026-2052 (2020). MSC: 90C15 03E75 PDF BibTeX XML Cite \textit{R. P. Liu}, SIAM J. Optim. 30, No. 3, 2026--2052 (2020; Zbl 1448.90064) Full Text: DOI
Jin, Yuxuan; Xu, Xudong; Zhao, Jinling Semidefinite relaxation algorithm for solving tensor split feasibility problem. (Chinese. English summary) Zbl 1449.90279 J. Henan Univ. Sci. Technol., Nat. Sci. 41, No. 1, 80-85 (2020). MSC: 90C22 PDF BibTeX XML Cite \textit{Y. Jin} et al., J. Henan Univ. Sci. Technol., Nat. Sci. 41, No. 1, 80--85 (2020; Zbl 1449.90279) Full Text: DOI
Izuchukwu, C.; Mebawondu, A. A.; Aremu, K. O.; Abass, H. A.; Mewomo, O. T. Viscosity iterative techniques for approximating a common zero of monotone operators in an Hadamard space. (English) Zbl 07217855 Rend. Circ. Mat. Palermo (2) 69, No. 2, 475-495 (2020). MSC: 47H09 47H10 49J20 49J40 PDF BibTeX XML Cite \textit{C. Izuchukwu} et al., Rend. Circ. Mat. Palermo (2) 69, No. 2, 475--495 (2020; Zbl 07217855) Full Text: DOI
Aragón Artacho, Francisco J.; Campoy, Rubén; Tam, Matthew K. The Douglas-Rachford algorithm for convex and nonconvex feasibility problems. (English) Zbl 1435.65090 Math. Methods Oper. Res. 91, No. 2, 201-240 (2020). Reviewer: Hang Lau (Montréal) MSC: 65K05 90C27 PDF BibTeX XML Cite \textit{F. J. Aragón Artacho} et al., Math. Methods Oper. Res. 91, No. 2, 201--240 (2020; Zbl 1435.65090) Full Text: DOI
Kesornprom, Suparat; Pholasa, Nattawut; Cholamjiak, Prasit On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem. (English) Zbl 07212123 Numer. Algorithms 84, No. 3, 997-1017 (2020). Reviewer: Ioannis Argyros (Lawton) MSC: 65J15 47J25 65F30 PDF BibTeX XML Cite \textit{S. Kesornprom} et al., Numer. Algorithms 84, No. 3, 997--1017 (2020; Zbl 07212123) Full Text: DOI
Santana, Daniel D.; Martins, Márcio A. F.; Odloak, Darci An efficient cooperative-distributed model predictive controller with stability and feasibility guarantees for constrained linear systems. (English) Zbl 1447.93097 Syst. Control Lett. 141, Article ID 104701, 10 p. (2020). MSC: 93B45 93D05 93C05 90C20 PDF BibTeX XML Cite \textit{D. D. Santana} et al., Syst. Control Lett. 141, Article ID 104701, 10 p. (2020; Zbl 1447.93097) Full Text: DOI
Lemos-Paião, Ana P.; Silva, Cristiana J.; Torres, Delfim F. M.; Venturino, Ezio Optimal control of aquatic diseases: a case study of Yemen’s cholera outbreak. (English) Zbl 1444.92118 J. Optim. Theory Appl. 185, No. 3, 1008-1030 (2020). MSC: 92D30 49K15 PDF BibTeX XML Cite \textit{A. P. Lemos-Paião} et al., J. Optim. Theory Appl. 185, No. 3, 1008--1030 (2020; Zbl 1444.92118) Full Text: DOI
Lu, Si-Tong; Zhang, Miao; Li, Qing-Na Feasibility and a fast algorithm for Euclidean distance matrix optimization with ordinal constraints. (English) Zbl 07202121 Comput. Optim. Appl. 76, No. 2, 535-569 (2020). MSC: 90C PDF BibTeX XML Cite \textit{S.-T. Lu} et al., Comput. Optim. Appl. 76, No. 2, 535--569 (2020; Zbl 07202121) Full Text: DOI
Tang, Yan; Gibali, Aviv Several inertial methods for solving split convex feasibilities and related problems. (English) Zbl 07201179 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 121, 25 p. (2020). Reviewer: Xiaolong Qin (Chengdu) MSC: 47H05 47H09 47N10 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{A. Gibali}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 121, 25 p. (2020; Zbl 07201179) Full Text: DOI
Artacho, Francisco J. Aragón; Campoy, Rubén; Elser, Veit An enhanced formulation for solving graph coloring problems with the Douglas-Rachford algorithm. (English) Zbl 07195880 J. Glob. Optim. 77, No. 2, 383-403 (2020). MSC: 05C15 90C27 47N10 PDF BibTeX XML Cite \textit{F. J. A. Artacho} et al., J. Glob. Optim. 77, No. 2, 383--403 (2020; Zbl 07195880) Full Text: DOI
Kraikaew, Rapeepan; Saejung, Satit A simple look at the method for solving split feasibility problems in Hilbert spaces. (English) Zbl 1443.47067 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 117, 9 p. (2020). Reviewer: Sorin-Mihai Grad (Wien) MSC: 47J25 47H05 47H09 47N10 PDF BibTeX XML Cite \textit{R. Kraikaew} and \textit{S. Saejung}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 117, 9 p. (2020; Zbl 1443.47067) Full Text: DOI
Jiang, Xue; Na, Jin Online surrogate multiobjective optimization algorithm for contaminated groundwater remediation designs. (English) Zbl 07193091 Appl. Math. Modelling 78, 519-538 (2020). MSC: 90 68 PDF BibTeX XML Cite \textit{X. Jiang} and \textit{J. Na}, Appl. Math. Modelling 78, 519--538 (2020; Zbl 07193091) Full Text: DOI
Van Huy, Pham; Hien, Nguyen Duc; Anh, Tran Viet A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem. (English) Zbl 1437.49046 Vietnam J. Math. 48, No. 1, 187-204 (2020). MSC: 49M37 90C26 65K15 49J40 PDF BibTeX XML Cite \textit{P. Van Huy} et al., Vietnam J. Math. 48, No. 1, 187--204 (2020; Zbl 1437.49046) Full Text: DOI
Boikanyo, Oganeditse A.; Zegeye, Habtu The split equality fixed point problem for quasi-pseudo-contractive mappings without prior knowledge of norms. (English) Zbl 1442.47056 Numer. Funct. Anal. Optim. 41, No. 7, 759-777 (2020). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{O. A. Boikanyo} and \textit{H. Zegeye}, Numer. Funct. Anal. Optim. 41, No. 7, 759--777 (2020; Zbl 1442.47056) Full Text: DOI
Liu, Qian; Xu, Yuqing; Zhou, Yang A class of exact penalty functions and penalty algorithms for nonsmooth constrained optimization problems. (English) Zbl 07181871 J. Glob. Optim. 76, No. 4, 745-768 (2020). MSC: 90C26 90C46 PDF BibTeX XML Cite \textit{Q. Liu} et al., J. Glob. Optim. 76, No. 4, 745--768 (2020; Zbl 07181871) Full Text: DOI
Monnet, Dominique; Hare, Warren; Lucet, Yves Fast feasibility check of the multi-material vertical alignment problem in road design. (English) Zbl 1432.90167 Comput. Optim. Appl. 75, No. 2, 515-536 (2020). MSC: 90C90 90B10 90C11 PDF BibTeX XML Cite \textit{D. Monnet} et al., Comput. Optim. Appl. 75, No. 2, 515--536 (2020; Zbl 1432.90167) Full Text: DOI
Chen, Jiawei; Li, Jun; Li, Xiaobing; Lv, Yibing; Yao, Jen-Chih Radius of robust feasibility of system of convex inequalities with uncertain data. (English) Zbl 1433.49023 J. Optim. Theory Appl. 184, No. 2, 384-399 (2020). MSC: 49J53 65K10 90C29 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Optim. Theory Appl. 184, No. 2, 384--399 (2020; Zbl 1433.49023) Full Text: DOI
Luke, D. Russell; Martins, Anna-Lena Convergence analysis of the relaxed Douglas-Rachford algorithm. (English) Zbl 07173421 SIAM J. Optim. 30, No. 1, 542-584 (2020). MSC: 65K10 49K40 49M05 65K05 90C26 49M20 49J53 PDF BibTeX XML Cite \textit{D. R. Luke} and \textit{A.-L. Martins}, SIAM J. Optim. 30, No. 1, 542--584 (2020; Zbl 07173421) Full Text: DOI
Cegielski, Andrzej; Reich, Simeon; Zalas, Rafał Weak, strong and linear convergence of the CQ-method via the regularity of Landweber operators. (English) Zbl 1435.47063 Optimization 69, No. 3, 605-636 (2020). Reviewer: Safeer Hussain Khan (Doha) MSC: 47J26 47N10 49N45 PDF BibTeX XML Cite \textit{A. Cegielski} et al., Optimization 69, No. 3, 605--636 (2020; Zbl 1435.47063) Full Text: DOI
Luke, D. Russell; Teboulle, Marc; Thao, Nguyen H. Necessary conditions for linear convergence of iterated expansive, set-valued mappings. (English) Zbl 1439.49032 Math. Program. 180, No. 1-2 (A), 1-31 (2020). MSC: 49J53 65K10 49K40 49M05 49M27 65K05 90C26 PDF BibTeX XML Cite \textit{D. R. Luke} et al., Math. Program. 180, No. 1--2 (A), 1--31 (2020; Zbl 1439.49032) Full Text: DOI
Chuasuk, P.; Kaewcharoen, A. Generalized extragradient iterative methods for solving split feasibility and fixed point problems in Hilbert spaces. (English) Zbl 07164427 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 34, 25 p. (2020). MSC: 47J06 47H10 65K10 PDF BibTeX XML Cite \textit{P. Chuasuk} and \textit{A. Kaewcharoen}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 34, 25 p. (2020; Zbl 07164427) Full Text: DOI
Gebrie, Anteneh Getachew; Wangkeeree, Rabian Parallel proximal method of solving split system of fixed point set constraint minimization problems. (English) Zbl 07164413 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 13, 29 p. (2020). MSC: 65K10 49J53 47H09 90C25 PDF BibTeX XML Cite \textit{A. G. Gebrie} and \textit{R. Wangkeeree}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 13, 29 p. (2020; Zbl 07164413) Full Text: DOI
Yao, Yonghong; Postolache, Mihai; Zhu, Zhichuan Gradient methods with selection technique for the multiple-sets split feasibility problem. (English) Zbl 1441.47082 Optimization 69, No. 2, 269-281 (2020). Reviewer: Xiaolong Qin (Chengdu) MSC: 47J25 47H05 47H09 90C48 PDF BibTeX XML Cite \textit{Y. Yao} et al., Optimization 69, No. 2, 269--281 (2020; Zbl 1441.47082) Full Text: DOI
Sahu, D. R.; Pitea, A.; Verma, M. A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems. (English) Zbl 07160088 Numer. Algorithms 83, No. 2, 421-449 (2020). MSC: 65 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., Numer. Algorithms 83, No. 2, 421--449 (2020; Zbl 07160088) Full Text: DOI
Bosch, P.; Contreras, J. P.; Munizaga-Rosas, J. Feasibility and cost minimisation for a lithium extraction problem. (English) Zbl 07157796 Comput. Oper. Res. 115, Article ID 104724, 10 p. (2020). MSC: 90B PDF BibTeX XML Cite \textit{P. Bosch} et al., Comput. Oper. Res. 115, Article ID 104724, 10 p. (2020; Zbl 07157796) Full Text: DOI
Hien, Le V.; Trinh, Hieu Minh; Pathirana, Pubudu N. On \(\ell_1\)-gain control of 2-d positive Roesser systems with directional delays: necessary and sufficient conditions. (English) Zbl 1430.93098 Automatica 112, Article ID 108720, 10 p. (2020). MSC: 93C28 93D20 93B52 90C05 PDF BibTeX XML Cite \textit{L. V. Hien} et al., Automatica 112, Article ID 108720, 10 p. (2020; Zbl 1430.93098) Full Text: DOI
Bernal, David E.; Vigerske, Stefan; Trespalacios, Francisco; Grossmann, Ignacio E. Improving the performance of DICOPT in convex MINLP problems using a feasibility pump. (English) Zbl 1425.90070 Optim. Methods Softw. 35, No. 1, 171-190 (2020). MSC: 90C11 90C25 90C30 90C59 65K05 PDF BibTeX XML Cite \textit{D. E. Bernal} et al., Optim. Methods Softw. 35, No. 1, 171--190 (2020; Zbl 1425.90070) Full Text: DOI
Choi, Byoung Jin; Ji, Un Cig; Lim, Yongdo Convex feasibility problems on uniformly convex metric spaces. (English) Zbl 07136207 Optim. Methods Softw. 35, No. 1, 21-36 (2020). MSC: 47 65 90 PDF BibTeX XML Cite \textit{B. J. Choi} et al., Optim. Methods Softw. 35, No. 1, 21--36 (2020; Zbl 07136207) Full Text: DOI
Bivas, Mira; Krastanov, Mikhail; Ribarska, Nadezhda On tangential transversality. (English) Zbl 1432.49017 J. Math. Anal. Appl. 481, No. 1, Article ID 123445, 21 p. (2020). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 49J52 49J53 46N10 90C30 PDF BibTeX XML Cite \textit{M. Bivas} et al., J. Math. Anal. Appl. 481, No. 1, Article ID 123445, 21 p. (2020; Zbl 1432.49017) Full Text: DOI
Pal, Aritra; Charkhgard, Hadi A feasibility pump and local search based heuristic for bi-objective pure integer linear programming. (English) Zbl 07280137 INFORMS J. Comput. 31, No. 1, 115-133 (2019). MSC: 90C PDF BibTeX XML Cite \textit{A. Pal} and \textit{H. Charkhgard}, INFORMS J. Comput. 31, No. 1, 115--133 (2019; Zbl 07280137) Full Text: DOI
Nandal, Ashish; Chugh, Renu; Kumari, Sudesh Convergence analysis of algorithms for variational inequalities involving strictly pseudo-contractive operators. (English) Zbl 07273201 Poincare J. Anal. Appl. 2019, No. 2, 123-136 (2019). MSC: 47H05 47H10 47J20 47J25 PDF BibTeX XML Cite \textit{A. Nandal} et al., Poincare J. Anal. Appl. 2019, No. 2, 123--136 (2019; Zbl 07273201)
Allahdadi, Mehdi A modified two-step method for solving interval linear programming problems. (English) Zbl 1453.90230 Int. J. Math. Oper. Res. 15, No. 2, 181-196 (2019). MSC: 90C70 90C05 PDF BibTeX XML Cite \textit{M. Allahdadi}, Int. J. Math. Oper. Res. 15, No. 2, 181--196 (2019; Zbl 1453.90230) Full Text: DOI
Combettes, Patrick L.; Glaudin, Lilian E. Proximal activation of smooth functions in splitting algorithms for convex image recovery. (English) Zbl 1443.90269 SIAM J. Imaging Sci. 12, No. 4, 1905-1935 (2019). MSC: 90C25 94A08 47N10 PDF BibTeX XML Cite \textit{P. L. Combettes} and \textit{L. E. Glaudin}, SIAM J. Imaging Sci. 12, No. 4, 1905--1935 (2019; Zbl 1443.90269) Full Text: DOI
Hermer, Neal Random function iterations for stochastic feasibility problems. (English) Zbl 1437.60005 Göttingen: Univ. Göttingen (Diss.). vii, 110 p. (2019). MSC: 60-02 60J10 60B05 47D07 PDF BibTeX XML Cite \textit{N. Hermer}, Random function iterations for stochastic feasibility problems. Göttingen: Univ. Göttingen (Diss.) (2019; Zbl 1437.60005) Full Text: Link Link
Martins, Anna-Lena Local and global analysis of relaxed Douglas-Rachford for nonconvex feasibility problems. (English) Zbl 1437.49001 Göttingen: Univ. Göttingen (Diss.). xi, 140 p. (2019). Reviewer: Bülent Karasözen (Ankara) MSC: 49-02 49J45 47-02 90-02 PDF BibTeX XML Cite \textit{A.-L. Martins}, Local and global analysis of relaxed Douglas-Rachford for nonconvex feasibility problems. Göttingen: Univ. Göttingen (Diss.) (2019; Zbl 1437.49001) Full Text: Link Link
Tran, Anh; Sun, Jing; Furlan, John M.; Pagalthivarthi, Krishnan V.; Visintainer, Robert J.; Wang, Yan pBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamics. (English) Zbl 1440.76130 Comput. Methods Appl. Mech. Eng. 347, 827-852 (2019). MSC: 76M35 90C56 90C90 PDF BibTeX XML Cite \textit{A. Tran} et al., Comput. Methods Appl. Mech. Eng. 347, 827--852 (2019; Zbl 1440.76130) Full Text: DOI
Dias, Lisia S.; Ierapetritou, Marianthi G. Data-driven feasibility analysis for the integration of planning and scheduling problems. (English) Zbl 1434.90054 Optim. Eng. 20, No. 4, 1029-1066 (2019). MSC: 90B35 PDF BibTeX XML Cite \textit{L. S. Dias} and \textit{M. G. Ierapetritou}, Optim. Eng. 20, No. 4, 1029--1066 (2019; Zbl 1434.90054) Full Text: DOI
Górecki, Paweł; Markin, Alexey; Eulenstein, Oliver Feasibility algorithms for the duplication-loss cost. (English) Zbl 07172840 Du, Ding-Zhu (ed.) et al., Computing and combinatorics. 25th international conference, COCOON 2019, Xi’an, China, July 29–31, 2019. Proceedings. Cham: Springer (ISBN 978-3-030-26175-7/pbk; 978-3-030-26176-4/ebook). Lecture Notes in Computer Science 11653, 206-218 (2019). MSC: 68Rxx PDF BibTeX XML Cite \textit{P. Górecki} et al., Lect. Notes Comput. Sci. 11653, 206--218 (2019; Zbl 07172840) Full Text: DOI
Zhao, Jinling; Chen, Wei The semi-algebraic split feasibility problem and its semi-definite relaxation. (English) Zbl 1449.49026 Numer. Math., Theory Methods Appl. 12, No. 2, 438-452 (2019). MSC: 49M20 49M37 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{W. Chen}, Numer. Math., Theory Methods Appl. 12, No. 2, 438--452 (2019; Zbl 1449.49026) Full Text: DOI
Guttmann-Beck, Nili; Sorek, Zeev; Stern, Michal Clustered spanning tree – conditions for feasibility. (English) Zbl 1430.05081 Discrete Math. Theor. Comput. Sci. 21, No. 1, Paper No. 15, 15 p. (2019). MSC: 05C65 PDF BibTeX XML Cite \textit{N. Guttmann-Beck} et al., Discrete Math. Theor. Comput. Sci. 21, No. 1, Paper No. 15, 15 p. (2019; Zbl 1430.05081) Full Text: Link
Abbas, Hossam Seddik; Männel, Georg; Herzog né Hoffmann, Christian; Rostalski, Philipp Tube-based model predictive control for linear parameter-varying systems with bounded rate of parameter variation. (English) Zbl 1429.93093 Automatica 107, 21-28 (2019). MSC: 93B45 93D20 93C05 PDF BibTeX XML Cite \textit{H. S. Abbas} et al., Automatica 107, 21--28 (2019; Zbl 1429.93093) Full Text: DOI
Al-Mazrooei, A. E.; Latif, A.; Qin, X.; Yao, J. C. Fixed point algorithms for split feasibility problems. (English) Zbl 07143038 Fixed Point Theory 20, No. 1, 245-254 (2019). MSC: 47H05 47H09 47N10 PDF BibTeX XML Cite \textit{A. E. Al-Mazrooei} et al., Fixed Point Theory 20, No. 1, 245--254 (2019; Zbl 07143038) Full Text: DOI
De Bernardi, Carlo Alberto; Miglierina, Enrico; Molho, Elena Stability of a convex feasibility problem. (English) Zbl 1433.90111 J. Glob. Optim. 75, No. 4, 1061-1077 (2019). MSC: 90C25 90C31 49J53 PDF BibTeX XML Cite \textit{C. A. De Bernardi} et al., J. Glob. Optim. 75, No. 4, 1061--1077 (2019; Zbl 1433.90111) Full Text: DOI arXiv
Nandal, Ashish; Chugh, Renu; Postolache, Mihai Iteration process for fixed point problems and zeros of maximal monotone operators. (English) Zbl 1425.47014 Symmetry 11, No. 5, Paper No. 655, 23 p. (2019). MSC: 47J25 47H09 47H05 47H10 PDF BibTeX XML Cite \textit{A. Nandal} et al., Symmetry 11, No. 5, Paper No. 655, 23 p. (2019; Zbl 1425.47014) Full Text: DOI
Necoara, Ion; Richtárik, Peter; Patrascu, Andrei Randomized projection methods for convex feasibility: conditioning and convergence rates. (English) Zbl 1430.90463 SIAM J. Optim. 29, No. 4, 2814-2852 (2019). MSC: 90C25 90C15 65K05 PDF BibTeX XML Cite \textit{I. Necoara} et al., SIAM J. Optim. 29, No. 4, 2814--2852 (2019; Zbl 1430.90463) Full Text: DOI
Dong, Xiwang; Hua, Yongzhao; Hu, Guoqiang; Li, Qingdong; Ren, Zhang On time-varying formation feasibility and reference function of time-delayed linear multiagent systems with switching digraphs. (English) Zbl 1426.93006 Int. J. Robust Nonlinear Control 29, No. 14, 4928-4942 (2019). MSC: 93A14 68T42 93C05 05C90 PDF BibTeX XML Cite \textit{X. Dong} et al., Int. J. Robust Nonlinear Control 29, No. 14, 4928--4942 (2019; Zbl 1426.93006) Full Text: DOI
Kesornprom, Suparat; Cholamjiak, Prasit Proximal type algorithms involving linesearch and inertial technique for split variational inclusion problem in Hilbert spaces with applications. (English) Zbl 1427.49008 Optimization 68, No. 12, 2365-2391 (2019). MSC: 49J40 47J20 35A15 65K10 49N45 PDF BibTeX XML Cite \textit{S. Kesornprom} and \textit{P. Cholamjiak}, Optimization 68, No. 12, 2365--2391 (2019; Zbl 1427.49008) Full Text: DOI
Van Long, Luong; Viet Thong, Duong; Dung, Vu Tien New algorithms for the split variational inclusion problems and application to split feasibility problems. (English) Zbl 07122803 Optimization 68, No. 12, 2335-2363 (2019). MSC: 47H09 47H10 47J20 47J25 PDF BibTeX XML Cite \textit{L. Van Long} et al., Optimization 68, No. 12, 2335--2363 (2019; Zbl 07122803) Full Text: DOI
Jouymandi, Zeynab; Moradlou, Fridoun Extragradient and linesearch methods for solving split feasibility problems in Hilbert spaces. (English) Zbl 07122124 Math. Methods Appl. Sci. 42, No. 12, 4343-4359 (2019). MSC: 65K10 90C25 47J05 47J25 PDF BibTeX XML Cite \textit{Z. Jouymandi} and \textit{F. Moradlou}, Math. Methods Appl. Sci. 42, No. 12, 4343--4359 (2019; Zbl 07122124) Full Text: DOI
Pal, Aritra; Charkhgard, Hadi FPBH: a feasibility pump based heuristic for multi-objective mixed integer linear programming. (English) Zbl 07119261 Comput. Oper. Res. 112, Article ID 104760, 21 p. (2019). MSC: 90B PDF BibTeX XML Cite \textit{A. Pal} and \textit{H. Charkhgard}, Comput. Oper. Res. 112, Article ID 104760, 21 p. (2019; Zbl 07119261) Full Text: DOI
Gutman, David Huckleberry Enhanced basic procedures for the projection and rescaling algorithm. (English) Zbl 1434.90134 Optim. Lett. 13, No. 6, 1259-1267 (2019). MSC: 90C25 52B12 65K05 90C60 PDF BibTeX XML Cite \textit{D. H. Gutman}, Optim. Lett. 13, No. 6, 1259--1267 (2019; Zbl 1434.90134) Full Text: DOI
Afacan, Mustafa Oǧuz Matching with restricted trade. (English) Zbl 1426.91168 Int. J. Game Theory 48, No. 3, 957-977 (2019). MSC: 91B68 91B60 PDF BibTeX XML Cite \textit{M. O. Afacan}, Int. J. Game Theory 48, No. 3, 957--977 (2019; Zbl 1426.91168) Full Text: DOI
Khuangsatung, Wongvisarut; Jailoka, Pachara; Suantai, Suthep An iterative method for solving proximal split feasibility problems and fixed point problems. (English) Zbl 1438.47108 Comput. Appl. Math. 38, No. 4, Paper No. 177, 18 p. (2019). MSC: 47J25 47H09 47H20 PDF BibTeX XML Cite \textit{W. Khuangsatung} et al., Comput. Appl. Math. 38, No. 4, Paper No. 177, 18 p. (2019; Zbl 1438.47108) Full Text: DOI
Sun, Jun; Qu, Biao A projection method for solving the sparsity split feasibility problem. (Chinese. English summary) Zbl 1438.90338 J. Math., Wuhan Univ. 39, No. 2, 227-233 (2019). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{J. Sun} and \textit{B. Qu}, J. Math., Wuhan Univ. 39, No. 2, 227--233 (2019; Zbl 1438.90338) Full Text: DOI
Wang, Jinhua; Hu, Yaohua; Yu, Carisa Kwok Wai; Zhuang, Xiaojun A family of projection gradient methods for solving the multiple-sets split feasibility problem. (English) Zbl 1429.90052 J. Optim. Theory Appl. 183, No. 2, 520-534 (2019). MSC: 90C25 90C30 47J25 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Optim. Theory Appl. 183, No. 2, 520--534 (2019; Zbl 1429.90052) Full Text: DOI
Bi, Xiaojun; Wang, Chao A reference point constrained dominance-based NSGA-III algorithm. (Chinese. English summary) Zbl 1438.90296 Control Decis. 34, No. 2, 369-376 (2019). MSC: 90C29 PDF BibTeX XML Cite \textit{X. Bi} and \textit{C. Wang}, Control Decis. 34, No. 2, 369--376 (2019; Zbl 1438.90296) Full Text: DOI
Vinh, Nguyen The; Cholamjiak, Prasit; Suantai, Suthep A new CQ algorithm for solving split feasibility problems in Hilbert spaces. (English) Zbl 07107885 Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2517-2534 (2019). MSC: 47H10 90C25 PDF BibTeX XML Cite \textit{N. T. Vinh} et al., Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2517--2534 (2019; Zbl 07107885) Full Text: DOI
Taiwo, A.; Jolaoso, L. O.; Mewomo, O. T. A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. (English) Zbl 1438.47122 Comput. Appl. Math. 38, No. 2, Paper No. 77, 28 p. (2019). MSC: 47J25 47H09 47N10 65J15 90C33 PDF BibTeX XML Cite \textit{A. Taiwo} et al., Comput. Appl. Math. 38, No. 2, Paper No. 77, 28 p. (2019; Zbl 1438.47122) Full Text: DOI
Khaninezhad, Reza; Golmohammadi, Azarang; Jafarpour, Behnam A pattern-matching method for flow model calibration under training image constraint. (English) Zbl 1421.86026 Comput. Geosci. 23, No. 4, 813-828 (2019). MSC: 86A32 62H35 PDF BibTeX XML Cite \textit{R. Khaninezhad} et al., Comput. Geosci. 23, No. 4, 813--828 (2019; Zbl 1421.86026) Full Text: DOI
Suantai, Suthep; Pholasa, Nattawut; Cholamjiak, Prasit Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems. (English) Zbl 07086866 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 1081-1099 (2019). MSC: 65K05 65K10 49J52 PDF BibTeX XML Cite \textit{S. Suantai} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 1081--1099 (2019; Zbl 07086866) Full Text: DOI
Dang, Ya-zheng; Sun, Jie; Zhang, Su Double projection algorithms for solving the split feasibility problems. (English) Zbl 07085503 J. Ind. Manag. Optim. 15, No. 4, 2023-2034 (2019). MSC: 65 PDF BibTeX XML Cite \textit{Y.-z. Dang} et al., J. Ind. Manag. Optim. 15, No. 4, 2023--2034 (2019; Zbl 07085503) Full Text: DOI
Mayne, David Q.; Falugi, Paola Stabilizing conditions for model predictive control. (English) Zbl 07085459 Int. J. Robust Nonlinear Control 29, No. 4, 894-903 (2019). MSC: 93B45 93D09 93E15 PDF BibTeX XML Cite \textit{D. Q. Mayne} and \textit{P. Falugi}, Int. J. Robust Nonlinear Control 29, No. 4, 894--903 (2019; Zbl 07085459) Full Text: DOI
Gibali, Aviv; Mai, Dang Thi; Vinh, Nguyen The A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. (English) Zbl 1438.65124 J. Ind. Manag. Optim. 15, No. 2, 963-984 (2019). MSC: 65K05 65K10 49J52 PDF BibTeX XML Cite \textit{A. Gibali} et al., J. Ind. Manag. Optim. 15, No. 2, 963--984 (2019; Zbl 1438.65124) Full Text: DOI
Shehu, Yekini; Vuong, Phan Tu; Cholamjiak, Prasit A self-adaptive projection method with an inertial technique for split feasibility problems in Banach spaces with applications to image restoration problems. (English) Zbl 1415.47010 J. Fixed Point Theory Appl. 21, No. 2, Paper No. 50, 24 p. (2019). MSC: 47J25 47H06 47H09 47J05 PDF BibTeX XML Cite \textit{Y. Shehu} et al., J. Fixed Point Theory Appl. 21, No. 2, Paper No. 50, 24 p. (2019; Zbl 1415.47010) Full Text: DOI
Heaton, Howard; Censor, Yair Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems. (English) Zbl 07069296 J. Glob. Optim. 74, No. 1, 95-119 (2019). MSC: 90C PDF BibTeX XML Cite \textit{H. Heaton} and \textit{Y. Censor}, J. Glob. Optim. 74, No. 1, 95--119 (2019; Zbl 07069296) Full Text: DOI arXiv
Bauschke, Heinz H.; Dao, Minh N.; Lindstrom, Scott B. The Douglas-Rachford algorithm for a hyperplane and a doubleton. (English) Zbl 07069295 J. Glob. Optim. 74, No. 1, 79-93 (2019). MSC: 47H10 49M27 65K05 65K10 90C26 PDF BibTeX XML Cite \textit{H. H. Bauschke} et al., J. Glob. Optim. 74, No. 1, 79--93 (2019; Zbl 07069295) Full Text: DOI arXiv
Yen, Le Hai; Huyen, Nguyen Thi Thanh; Muu, Le Dung A subgradient algorithm for a class of nonlinear split feasibility problems: application to jointly constrained Nash equilibrium models. (English) Zbl 1423.90258 J. Glob. Optim. 73, No. 4, 849-868 (2019). MSC: 90C33 91A10 PDF BibTeX XML Cite \textit{L. H. Yen} et al., J. Glob. Optim. 73, No. 4, 849--868 (2019; Zbl 1423.90258) Full Text: DOI
Suantai, Suthep; Witthayarat, Uamporn; Shehu, Yekini; Cholamjiak, Prasit Iterative methods for the split feasibility problem and the fixed point problem in Banach spaces. (English) Zbl 07068092 Optimization 68, No. 5, 955-980 (2019). MSC: 47H04 47H10 54H25 PDF BibTeX XML Cite \textit{S. Suantai} et al., Optimization 68, No. 5, 955--980 (2019; Zbl 07068092) Full Text: DOI
Yung Kong, T.; Pajoohesh, Homeira; Herman, Gabor T. String-averaging algorithms for convex feasibility with infinitely many sets. (English) Zbl 07066692 Inverse Probl. 35, No. 4, Article ID 045011, 37 p. (2019). MSC: 65 68 PDF BibTeX XML Cite \textit{T. Yung Kong} et al., Inverse Probl. 35, No. 4, Article ID 045011, 37 p. (2019; Zbl 07066692) Full Text: DOI
Aragón Artacho, Francisco J.; Censor, Yair; Gibali, Aviv The cyclic Douglas-Rachford algorithm with \(r\)-sets-Douglas-Rachford operators. (English) Zbl 07065522 Optim. Methods Softw. 34, No. 4, 875-889 (2019). MSC: 65K05 90C25 PDF BibTeX XML Cite \textit{F. J. Aragón Artacho} et al., Optim. Methods Softw. 34, No. 4, 875--889 (2019; Zbl 07065522) Full Text: DOI arXiv
Ali, Bashir; Harbau, M. H. Convergence theorems for pseudomonotone equilibrium problem, split feasibility problem, and multivalued strictly pseudocontractive mappings. (English) Zbl 07060058 Numer. Funct. Anal. Optim. 40, No. 10, 1194-1214 (2019). MSC: 47H09 47J25 PDF BibTeX XML Cite \textit{B. Ali} and \textit{M. H. Harbau}, Numer. Funct. Anal. Optim. 40, No. 10, 1194--1214 (2019; Zbl 07060058) Full Text: DOI
Izuchukwu, C.; Aremu, K. O.; Mebawondu, A. A.; Mewomo, O. T. A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space. (English) Zbl 07056072 Appl. Gen. Topol. 20, No. 1, 193-210 (2019). MSC: 47H09 47H10 49J20 49J40 PDF BibTeX XML Cite \textit{C. Izuchukwu} et al., Appl. Gen. Topol. 20, No. 1, 193--210 (2019; Zbl 07056072) Full Text: Link
Hermer, Neal; Luke, D. Russell; Sturm, Anja Random function iterations for consistent stochastic feasibility. (English) Zbl 1411.60107 Numer. Funct. Anal. Optim. 40, No. 4, 386-420 (2019). MSC: 60J05 52A22 49J55 49J53 65K05 PDF BibTeX XML Cite \textit{N. Hermer} et al., Numer. Funct. Anal. Optim. 40, No. 4, 386--420 (2019; Zbl 1411.60107) Full Text: DOI arXiv
Guo, Qi; Zheng, Meng-Meng; Huang, Zheng-Hai Properties of \(S\)-tensors. (English) Zbl 1411.90336 Linear Multilinear Algebra 67, No. 4, 685-696 (2019). MSC: 90C33 65K10 15A18 15A69 65F15 65F10 PDF BibTeX XML Cite \textit{Q. Guo} et al., Linear Multilinear Algebra 67, No. 4, 685--696 (2019; Zbl 1411.90336) Full Text: DOI
Tian, Ming; Jiang, Bing-Nan Viscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert space. (English) Zbl 1412.58008 Numer. Funct. Anal. Optim. 40, No. 8, 902-923 (2019). MSC: 58E35 47H09 65J15 PDF BibTeX XML Cite \textit{M. Tian} and \textit{B.-N. Jiang}, Numer. Funct. Anal. Optim. 40, No. 8, 902--923 (2019; Zbl 1412.58008) Full Text: DOI
Qin, Xiaolong; Wang, Lin A fixed point method for solving a split feasibility problem in Hilbert spaces. (English) Zbl 1440.47053 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 1, 315-325 (2019). Reviewer: Sorin-Mihai Grad (Wien) MSC: 47J25 47H05 47H09 47N10 PDF BibTeX XML Cite \textit{X. Qin} and \textit{L. Wang}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 1, 315--325 (2019; Zbl 1440.47053) Full Text: DOI
Censor, Yair; Heaton, Howard; Schulte, Reinhard Derivative-free superiorization with component-wise perturbations. (English) Zbl 07042047 Numer. Algorithms 80, No. 4, 1219-1240 (2019). MSC: 65 PDF BibTeX XML Cite \textit{Y. Censor} et al., Numer. Algorithms 80, No. 4, 1219--1240 (2019; Zbl 07042047) Full Text: DOI arXiv
Ma, Zhaoli; Wang, Lin; Chang, Shih-sen On the split feasibility problem and fixed point problem of quasi-\(\phi\)-nonexpansive mapping in Banach spaces. (English) Zbl 07042046 Numer. Algorithms 80, No. 4, 1203-1218 (2019). MSC: 47H09 47J25 PDF BibTeX XML Cite \textit{Z. Ma} et al., Numer. Algorithms 80, No. 4, 1203--1218 (2019; Zbl 07042046) Full Text: DOI
Li, Chunmei; Duan, Xuefeng; Lu, Linzhang; Wang, Qingwen; Shen, Shuqian Iterative algorithm for solving a class of convex feasibility problem. (English) Zbl 1410.49035 J. Comput. Appl. Math. 352, 352-367 (2019). MSC: 49M30 81P68 PDF BibTeX XML Cite \textit{C. Li} et al., J. Comput. Appl. Math. 352, 352--367 (2019; Zbl 1410.49035) Full Text: DOI