×

About extensions of the extremal principle. (English) Zbl 1391.49024

Summary: In this paper, after recalling and discussing the conventional extremality, local extremality, stationarity and approximate stationarity properties of collections of sets, and the corresponding (extended) extremal principle, we focus on extensions of these properties and the corresponding dual conditions with the goal to refine the main arguments used in this type of results, clarify the relationships between different extensions, and expand the applicability of the generalized separation results. We introduce and study new more universal concepts of relative extremality and stationarity and formulate the relative extended extremal principle. Among other things, certain stability of the relative approximate stationarity is proved. Some links are established between the relative extremality and stationarity properties of collections of sets and (the absence of) certain regularity, lower semicontinuity, and Lipschitz-like properties of set-valued mappings.

MSC:

49J52 Nonsmooth analysis
49J53 Set-valued and variational analysis
49K40 Sensitivity, stability, well-posedness
90C30 Nonlinear programming
90C46 Optimality conditions and duality in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Apetrii, M; Durea, M; Strugariu, R, On subregularity properties of set-valued mappings, Set-Valued Var. Anal., 21, 93-126, (2013) · Zbl 1285.90062 · doi:10.1007/s11228-012-0213-4
[2] Borwein, JM; Jofré, A, A nonconvex separation property in Banach spaces, Math. Methods Oper. Res., 48, 169-179, (1998) · Zbl 0935.49008 · doi:10.1007/s001860050019
[3] Borwein, J. M., Zhu, Q. J.: Techniques of Variational Analysis. Springer, New York (2005) · Zbl 1076.49001
[4] Cibulka, R., Fabian, M., Kruger, A. Y.: On semiregularity of mappings. arXiv:1711.04420 (2017) · Zbl 1448.58006
[5] Dontchev, A. L., Rockafellar, R. T.: Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014) · Zbl 1337.26003
[6] Dubovitskii, AYa; Milyutin, AA, Extremum problems in the presence of restrictions, USSR Comp. Maths. Math. Phys., 5, 1-80, (1965) · Zbl 0158.33504 · doi:10.1016/0041-5553(65)90148-5
[7] Fabian, M, Subdifferentials, local ε-supports and asplund spaces, J. Lond. Math. Soc., s2-34, 568-576, (1986) · Zbl 0586.46038 · doi:10.1112/jlms/s2-34.3.568
[8] Fabian, M, Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and preiss, Acta Univ. Carol., 30, 51-56, (1989) · Zbl 0714.49022
[9] Ioffe, AD, Fuzzy principles and characterization of trustworthiness, Set-Valued Anal., 6, 265-276, (1998) · Zbl 0927.49009 · doi:10.1023/A:1008614315547
[10] Ioffe, AD, Metric regularity and subdifferential calculus, Russ. Math. Surveys, 55, 501-558, (2000) · Zbl 0979.49017 · doi:10.1070/RM2000v055n03ABEH000292
[11] Ioffe, AD, Transversality in variational analysis, J. Optim. Theory Appl., 174, 343-366, (2017) · Zbl 1382.49014 · doi:10.1007/s10957-017-1130-3
[12] Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications Nonconvex. Optimization and its Applications, vol. 60. Kluwer Academic Publishers, Dordrecht (2002) · Zbl 1173.49300
[13] Kruger, A.Y.: Generalized differentials of nonsmooth functions. VINITI no. 1332-81. Minsk, 67 pp. (In Russian). Available at: https://asterius.ballarat.edu.au/akruger/research/publications.html (1981)
[14] Kruger, A.Y.: \(ε\)-semidifferentials and \(ε\)-normal elements. VINITI no. 1331-81. Minsk, 76 pp. (In Russian). Available at https://asterius.ballarat.edu.au/akruger/research/publications.html (1981) · Zbl 1268.90126
[15] Kruger, AY, Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Sibirsk. Mat. Zh., 26, 78-90, (1985) · Zbl 0568.49014
[16] Kruger, AY, About extremality of systems of sets, Dokl. Nats. Akad. Nauk Belarusi, 42, 24-28, (1998) · Zbl 1039.90531
[17] Kruger, AY, Strict (ε,δ)-semidifferentials and extremality of sets and functions, Dokl. Nats. Akad. Nauk Belarusi, 44, 19-22, (2000) · Zbl 1177.49029
[18] Kruger, AY, Strict (ε,δ)-subdifferentials and extremality conditions, Optimization, 51, 539-554, (2002) · Zbl 1053.49014 · doi:10.1080/0233193021000004967
[19] Kruger, AY, On Fréchet subdifferentials, J. Math. Sci., 116, 3325-3358, (2003) · Zbl 1039.49021 · doi:10.1023/A:1023673105317
[20] Kruger, AY, Weak stationarity: eliminating the gap between necessary and sufficient conditions, Optimization, 53, 147-164, (2004) · Zbl 1144.90507 · doi:10.1080/02331930410001695292
[21] Kruger, AY, Stationarity and regularity of set systems, Pac. J. Optim., 1, 101-126, (2005) · Zbl 1105.90104
[22] Kruger, AY, About regularity of collections of sets, Set-Valued Anal., 14, 187-206, (2006) · Zbl 1141.49020 · doi:10.1007/s11228-006-0014-8
[23] Kruger, AY, About stationarity and regularity in variational analysis, Taiwan. J. Math., 13, 1737-1785, (2009) · Zbl 1223.90075 · doi:10.11650/twjm/1500405612
[24] Kruger, AY; López, MA, Stationarity and regularity of infinite collections of sets, J. Optim. Theory Appl., 154, 339-369, (2012) · Zbl 1268.90126 · doi:10.1007/s10957-012-0043-4
[25] Kruger, AY; Luke, DR; Thao, NH, About subtransversality of collections of sets, Set-Valued Var. Anal., 25, 701-729, (2017) · Zbl 1383.49028 · doi:10.1007/s11228-017-0436-5
[26] Kruger, AY; Mordukhovich, BS, Extremal points and the Euler equation in nonsmooth optimization problems, Dokl. Akad. Nauk BSSR, 24, 684-687, (1980) · Zbl 0449.49015
[27] Kruger, A.Y., Mordukhovich, B.S.: Generalized normals and derivatives and necessary conditions for an extremum in problems of nondifferentiable programming. II. VINITI no. 494-80, 60 pp. Minsk (1980). In Russian. Available at https://asterius.ballarat.edu.au/akruger/research/publications.html · Zbl 0927.49009
[28] Kruger, AY; Thao, NH, About uniform regularity of collections of sets, Serdica Math. J., 39, 287-312, (2013) · Zbl 1324.49015
[29] Kruger, AY; Thao, NH, Quantitative characterizations of regularity properties of collections of sets, J. Optim. Theory Appl., 164, 41-67, (2015) · Zbl 1309.49016 · doi:10.1007/s10957-014-0556-0
[30] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. Grundlehren der Mathematischen Wissenschaften, vol. 330. Springer, Berlin Heidelberg (2006)
[31] Mordukhovich, BS; Shao, Y, Extremal characterizations of asplund spaces, Proc. Am. Math. Soc., 124, 197-205, (1996) · Zbl 0849.46010 · doi:10.1090/S0002-9939-96-03049-3
[32] Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, 2nd edn., vol. 1364. Springer-Verlag, Berlin Heidelberg (1993) · Zbl 0921.46039
[33] Rockafellar, R. T., Wets, R. J. -B.: Variational Analysis. Springer, Berlin Heidelberg (1998) · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
[34] Pierra, G, Decomposition through formalization in a product space, Math. Program., 28, 96-115, (1984) · Zbl 0523.49022 · doi:10.1007/BF02612715
[35] Zheng, XY; Ng, KF, The Lagrange multiplier rule for multifunctions in Banach spaces, SIAM J. Optim., 17, 1154-1175, (2006) · Zbl 1127.49014 · doi:10.1137/060651860
[36] Zheng, XY; Ng, KF, A unified separation theorem for closed sets in a Banach space and optimality conditions for vector optimization, SIAM J. Optim., 21, 886-911, (2011) · Zbl 1229.49018 · doi:10.1137/100811155
[37] Zheng, XY; Yang, Z; Zou, J, Exact separation theorem for closed sets in asplund spaces, Optimization, 66, 1065-1077, (2017) · Zbl 1407.90344 · doi:10.1080/02331934.2017.1316503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.