×

Changing variables in Taylor series with applications to PDEs. (English) Zbl 1464.65217

Summary: How to compute a Taylor series with respect to a coordinate system, when this series is known with respect to alternative coordinates? This paper gives an answer to this question, as well as applications to Partial Differential Equations. An alternative technique is also proposed by applying the change of variables directly on the PDE. Such procedures prove to be efficient for the numerical solution of PDEs, especially to accelerate the convergence or in the case of exterior domains. These new techniques were motivated by PDEs solved in the framework of the so-called Taylor Meshless Method, but the application field could cover any numerical method based on Taylor series.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65B10 Numerical summation of series

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rentrop, P., A Taylor series method for the numerical solution of two-point boundary value problems, Numer Math, 31, 359-375 (1978) · Zbl 0421.65051
[2] Corliss, G.; Chang, Y. F., Solving ordinary differential equations using Taylor series, ACM Trans Math Softw, 8, 114-144 (1982) · Zbl 0503.65046
[3] Barrio, R., Performance of the Taylor series method for ODEs/DAEs, Appl Math Comput, 163, 2, 525-545 (2005) · Zbl 1067.65063
[4] López, J. L.; Sinusía, P.; Temme, N. M., Multi-point Taylor approximations in one-dimensional linear boundary value problems, Appl Math Comput, 207, 519-527 (2009) · Zbl 1158.65051
[5] Jirousek, J.; Leon, N., A powerful finite element for plate bending, Comput Method Appl Math, 12, 77-96 (1977) · Zbl 0366.73065
[6] Jirousek, J.; Venkatesh, A., Hybrid Trefftz plane elasticity elements with p-method capabilities, Int J Numer Meth Eng, 35, 1443-1472 (1992) · Zbl 0775.73259
[7] Jirousek, J.; Zieliński, A. P., Survey of Trefftz-type element formulations, Comput Struct, 63, 225-242 (1997) · Zbl 0926.74116
[8] Kołodziej, J. A.; Grabski, J. K., Many names of the Trefftz method, Eng Anal Bound Elem, 96, 169-178 (2018) · Zbl 1403.65003
[9] Jirousek, J.; Teodorescu, P., Large finite elements method for the solution of problems in the theory of elasticity, Comput Struct, 15, 5, 575-587 (1982) · Zbl 0489.73077
[10] Zézé, D. S.; Potier-Ferry, M.; Damil, N., A boundary meshless method with shape functions computed from the PDE, Eng Anal Bound Elem, 34, 747-754 (2010) · Zbl 1244.65197
[11] Yang, J.; Hu, H.; Koutsawa, Y.; Potier-Ferry, M., Taylor meshless method for solving non-linear partial differential equations, J Comput Phys, 348, 385-400 (2017) · Zbl 1380.65393
[12] Griewank, A.; Utke, J.; Walther, A., Evaluating higher derivative tensors by forward propagation of univariate Taylor series, Math Comput, 69, 1117-1130 (2000) · Zbl 0952.65028
[13] Neidinger, R., Directions for computing truncated multivariate Taylor series, Math Comput, 74, 321-340 (2005) · Zbl 1052.65012
[14] Griewank, A.; Walther, A., Evaluating derivatives: principles and techniques of algorithmic differentiation (2008), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 1159.65026
[15] Kita, E.; Kamiya, N., Trefftz method: an overview, Adv Eng Softw, 24, 3-12 (1995) · Zbl 0984.65502
[16] Tampango, Y.; Potier-Ferry, M.; Koutsawa, Y.; Tiem, S., Coupling of polynomial approximations with application to a boundary meshless method, Int J Numer Methods Eng, 95, 1094-1112 (2013) · Zbl 1352.65598
[17] Yang, J.; Hu, H.; Potier-Ferry, M., Least-square collocation and Lagrange multipliers for Taylor meshless method, Numer Methods Part Diff Eq, 35, 1, 84-113 (2019) · Zbl 1419.65134
[18] Lions, J. L., Perturbations singulières dans les problèmes aux limites et en contrôle optimal (1973), Springer: Springer Berlin · Zbl 0268.49001
[19] Prandtl, L., Zur berechnung der grenzschichten, Z Angew Math Mech, 18, 77-82 (1938) · JFM 64.0872.03
[20] Van Dyke, M., Perturbation methods in fluid mechanics (1975), The Parabolic Press: The Parabolic Press Stanford · Zbl 0329.76002
[21] Muskhelishvili, N. I., Some basic problems of the mathematical theory of elasticity (1977), Springer: Springer Berlin
[22] Herrera, I.; Sabina, F. J., Connectivity as an alternative to boundary integral equations: construction of bases, Proc Natl Acad Sci, 75, 5, 2059-2063 (1978) · Zbl 0407.73064
[23] Van Dyke, M., Analysis and improvement of perturbation series, Q J Mech Appl Math, 27, 423-450 (1974) · Zbl 0295.65066
[24] Baker, G. A.; Graves-Morris, P. R., Padè approximants (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0923.41001
[25] Brezinski, C., Convergence acceleration during the 20th century, J Comput Appl Math, 122, 1-21 (2000) · Zbl 0976.65003
[26] Yang, J.; Potier-Ferry, M.; Akpama, K.; Hu, H.; Koutsawa, Y.; Tian, H., Trefftz methods and Taylor series, Arch Comput Method E, 1-18 (2019)
[27] Qin, Q. H.; Wang, H., Matlab and C programming for Trefftz finite element methods (2008), CRC Press: CRC Press Boca Raton
[28] Schaback, R., Error estimates and condition numbers for radial basis function interpolation, Adv Comput Math, 3, 251-264 (1995) · Zbl 0861.65007
[29] Kansa, E. J.; Hon, Y. C., Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations, Comput Math Appl, 39, 7-8, 123-137 (2000) · Zbl 0955.65086
[30] Riou, H.; Ladevèze, P.; Kovalevsky, L., The Variational Theory of Complex Rays: an answer to the resolution of mid-frequency 3D engineering problem, J Sound Vib, 332, 1947-1960 (2013)
[31] Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv Comput Math, 9, 1-2, 69-95 (1998) · Zbl 0922.65074
[32] Chen, C. S.; Cho, H. A.; Golberg, M. A., Some comments on the ill-conditioning of the method of fundamental solutions, Eng Anal Bound Elem, 30, 405-410 (2006) · Zbl 1187.65136
[33] Alves, C. J.S.; Chen, C. S., A new method of fundamental solutions applied to nonhomogeneous elliptic problems, Adv Comput Math, 23, 1-2, 125-142 (2005) · Zbl 1070.65119
[34] Cheng, A. H.D.; Golberg, M. A.; Kansa, E. J.; Zammito, G., Exponential convergence and Hc multiquadric collocation method for partial differential equations, Numer Methods Part Diff Eq, 19, 571-594 (2003) · Zbl 1031.65121
[35] Yang, J.; Hu, H.; Potier-Ferry, M., Solving large scale problems by Taylor Meshless Method, Int J Numer Meth Eng, 112, 103-124 (2017)
[36] Chen, C. S.; Fan, C. M.; Monroe, J., 75-105 (2008), Dynamic Publishers: Dynamic Publishers Atlanta
[37] Fornberg, B.; Piret, C., A stable algorithm for flat radial basis functions on a sphere, SIAM J Sci Comput, 30, 60-80 (2007) · Zbl 1159.65307
[38] Zhou, X.; Hon, Y. C.; Li, J., Overlapping domain decomposition method by radial basis functions, Appl Numer Math, 44, 241-255 (2003) · Zbl 1013.65134
[39] Ling, L.; Kansa, E. J., Preconditioning for radial basis functions with domain decomposition methods, Math Comput Model, 40, 1413-1427 (2004) · Zbl 1077.41008
[40] Muller, J. M.; Brisebarre, N.; de Dinechin, F.; Jeannerod, C.-P.; Lefèvre, V.; Melquiond, G., Handbook of floating-point arithmetic (2010), Springer: Springer Dordrecht · Zbl 1197.65001
[41] Kansa, E. J.; Holoborodko, P., On the ill-conditioned nature of C^∞ RBF strong collocation, Eng Anal Bound Elem, 78, 26-30 (2017) · Zbl 1403.65160
[42] Tampango, Y.; Potier-Ferry, M.; Koutsawa, Y.; Belouettar, S., Convergence analysis and detection of singularities within a boundary meshless method based on Taylor series, Eng Anal Bound Elem, 36, 1465-1472 (2012) · Zbl 1352.65438
[43] Babuška, I.; Banerjee, U., Stable generalized finite element method (SGFEM), Comput Method Appl M, 201, 91-111 (2012) · Zbl 1239.74093
[44] Yang, J.; Potier-Ferry, M.; Hu, H., Solving the stationary Navier-Stokes equations by using Taylor meshless method, Eng Anal Bound Elem, 98, 8-16 (2019) · Zbl 1404.76197
[45] Tian, H.; Potier-Ferry, M.; Abed-Meraim, F., A numerical method based on Taylor series for bifurcation analyses within Föppl-von karman plate theory, Mech Res Commun, 93, 154-158 (2018)
[46] Balakrishnan, K.; Ramachandran, P. A., Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems, J Comput Phys, 172, 1, 1-18 (2001) · Zbl 0992.65131
[47] Yang, J.; Hu, H.; Potier-Ferry, M., Computing singular solutions to partial differential equations by Taylor series, CR Mec, 346, 7, 603-614 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.