×

BAGS: a Bayesian adaptive group sequential trial design with subgroup-specific survival comparisons. (English) Zbl 1457.62351

Summary: A Bayesian group sequential design is proposed that performs survival comparisons within patient subgroups in randomized trials where treatment-subgroup interactions may be present. A latent subgroup membership variable is assumed to allow the design to adaptively combine homogeneous subgroups, or split heterogeneous subgroups, to improve the procedure’s within-subgroup power. If a baseline covariate related to survival is available, the design may incorporate this information to improve subgroup identification while basing the comparative test on the average hazard ratio. General guidelines are provided for calibrating prior hyperparameters and design parameters to control the overall Type I error rate and optimize performance. Simulations show that the design is robust under a wide variety of different scenarios. When two or more subgroups are truly homogeneous but differ from the other subgroups, the proposed method is substantially more powerful than tests that either ignore subgroups or conduct a separate test within each subgroup.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62L05 Sequential statistical design
62F15 Bayesian inference

Software:

BGPhazard
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aalen, O. O., “Heterogeneity in Survival Analysis, Statistics in Medicine, 7, 1121-1137 (1988) · doi:10.1002/sim.4780071105
[2] Bechhofer, R. E.; Santner, T. J.; Goldsman, D. M., Screening and Multiple Comparisons, Design and Analysis of Experiments for Statistical Selection (1995), New York: Wiley, New York
[3] Berry, S. M.; Berry, D. A.; Natarajan, K.; Lin, C. S.; Hennekens, C. H.; Belder, R., Bayesian Survival Analysis With Nonproportional Hazards: Meta-Analysis of Combination Pravastatin-Aspirin,”, Journal of the American Statistical Association, 99, 36-44 (2004) · Zbl 1089.62524 · doi:10.1198/016214504000000052
[4] Cécilia-Joseph, E.; Auvert, B.; Broët, P.; Moreau, T., “Influence of Trial Duration on the Bias of the Estimated Treatment Effect in Clinical Trials When Individual Heterogeneity Is Ignored, Biometrical Journal, 57, 371-383 (2015) · Zbl 1325.62195 · doi:10.1002/bimj.201400046
[5] Chapple, A. G.; Thall, P. F., “Subgroup-Specific Dose Finding in Phase I Clinical Trials Based on Time to Toxicity Allowing Adaptive Subgroup Combination, Pharmaceutical Statistics, 17, 734-749 (2018) · doi:10.1002/pst.1891
[6] Chen, C.; Li, X.; Yuan, S.; Antonijevic, Z.; Kalamegham, R.; Beckman, R. A., “Statistical Design and Considerations of a Phase 3 Basket Trial for Simultaneous Investigation of Multiple Tumor Types in One Study, Statistics in Biopharmaceutical Research, 8, 248-257 (2016) · doi:10.1080/19466315.2016.1193044
[7] Chu, Y.; Yuan, Y., “A Bayesian Basket Trial Design Using a Calibrated Bayesian Hierarchical Model, Clinical Trials, 15, 149-158 (2018) · doi:10.1177/1740774518755122
[8] Cox, D. R., “Regression Models and Life-Tables, Journal of the Royal Statistical Society, Series B, 34, 187-202 (1972) · doi:10.1111/j.2517-6161.1972.tb00899.x
[9] Cunanan, K. M.; Iasonos, A.; Shen, R.; Begg, C. B.; Gönen, M., “An Efficient Basket Trial Design, Statistics in Medicine, 36, 1568-1579 (2017) · doi:10.1002/sim.7227
[10] De Iorio, M.; Johnson, W. O.; Müller, P.; Rosner, G. L., “Bayesian Nonparametric Nonproportional Hazards Survival Modeling, Biometrics, 65, 762-771 (2009) · Zbl 1172.62073 · doi:10.1111/j.1541-0420.2008.01166.x
[11] Garralda, E.; Dienstmann, R.; Piris-Gimenez, A.; Brana, I.; Rodon, J.; Tabernero, J., “New Clinical Trial Designs in the Era of Precision Medicine, Molecular Oncology, 13, 549-557 (2019) · doi:10.1002/1878-0261.12465
[12] Green, P. J., “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination, Biometrika, 82, 711-732 (1995) · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[13] Hobbs, B. P.; Landin, R., “Bayesian Basket Trial Design With Exchangeability Monitoring, Statistics in Medicine, 37, 3557-3572 (2018) · doi:10.1002/sim.7893
[14] Hochberg, Y., “A Sharper Bonferroni Procedure for Multiple Tests of Significance, Biometrika, 75, 800-802 (1988) · Zbl 0661.62067 · doi:10.1093/biomet/75.4.800
[15] Hsu, J. C., Multiple Comparisons: Theory and Methods (1996), London: Chapman and Hall-CRC Press, London · Zbl 0898.62090
[16] Ibrahim, J. G.; Chen, M.-H.; Sinha, D., Bayesian Survival Analysis (2001), New York: Springer, New York · Zbl 0978.62091
[17] Jennison, C.; Turnbull, B. W., Group Sequential Methods With Applications to Clinical Trials (1999), Boca Raton, FL: Chapman & Hall/CRC Press, Boca Raton, FL
[18] Kalbfleisch, J. D.; Prentice, R. L., “Estimation of the Average Hazard Ratio, Biometrika, 68, 105-112 (1981) · Zbl 0472.62053 · doi:10.1093/biomet/68.1.105
[19] Kosorok, M. R.; Yuanjun, S.; DeMets, D. L., “Design and Analysis of Group Sequential Clinical Trials With Multiple Primary Endpoints, Biometrics, 60, 134-145 (2004) · Zbl 1130.62374 · doi:10.1111/j.0006-341X.2004.00146.x
[20] Lai, T. L.; Lavori, P. W.; Tsang, K. W., “Adaptive Enrichment Designs for Confirmatory Trials, Statistics in Medicine, 38, 613-624 (2019) · doi:10.1002/sim.7946
[21] Lan, K. K. G.; DeMets, D. L., “Discrete Sequential Boundaries for Clinical Trials, Biometrika, 70, 659-663 (1983) · Zbl 0543.62059 · doi:10.2307/2336502
[22] Lin, R.; Coleman, R. L.; Yuan., Y., “TOP: Time-to-Event Bayesian Optimal Phase II Trial Design for Cancer Immunotherapy, Journal of the National Cancer Institute, 112, 38-45 (2020)
[23] Liu, S.; Yin, G.; Yuan, Y., “Bayesian Data Augmentation Dose Finding With Continual Reassessment Method and Delayed Toxicity, The Annals of Applied Statistics, 7, 2138-2156 (2013) · Zbl 1283.62053 · doi:10.1214/13-AOAS661
[24] Maurer, W.; Bretz, F., “Multiple Testing in Group Sequential Trials Using Graphical Approaches, Statistics in Biopharmaceutical Research, 5, 311-32 (2013) · doi:10.1080/19466315.2013.807748
[25] Mehta, C. R.; Liu, L.; Theuer, C., “An Adaptive Population Enrichment Phase III Trial of TRC105 and Pazopanib Versus Pazopanib Alone in Patients With Advanced Angiosarcoma (TAPPAS Trial, Annals of Oncology, 30, 103-108 (2019) · doi:10.1093/annonc/mdy464
[26] Murray, T. A.; Yuan, Y.; Thall, P. F.; Elizondo, J. H.; Hofstetter, W. L., “A Utility-Based Design for Randomized Comparative Trials With Ordinal Outcomes and Prognostic Subgroups, Biometrics, 74, 1095-1103 (2018) · Zbl 1414.62462 · doi:10.1111/biom.12842
[27] Nieto-Barajas, L. E.; Walker, S. G., “Markov Beta and Gamma Processes for Modelling Hazard Rates, Scandinavian Journal of Statistics, 29, 413-424 (2002) · Zbl 1036.62105 · doi:10.1111/1467-9469.00298
[28] O’Brien, P. C.; Fleming, T. R., “A Multiple Testing Procedure for Clinical Trials, Biometrics, 35, 549-556 (1979) · doi:10.2307/2530245
[29] Pocock, S. J., “Group Sequential Methods in the Design and Analysis of Clinical Trials, Biometrika, 64, 191-199 (1977) · doi:10.1093/biomet/64.2.191
[30] Pocock, S. J.; Assmann, S. F.; Enos, L. E.; Kasten, L. E., “Subgroup Analysis, Covariate Adjustment and Baseline Comparisons in Clinical Trial Reporting: Current Practice and Problems, Statistics in Medicine, 21, 2917-2930 (2002) · doi:10.1002/sim.1296
[31] Psioda, M. A.; Xu, J.; Jiang, Q.; Ke, C.; Yang, Z.; Ibrahim, J. G., “Bayesian Adaptive Basket Trial Design Using Model Averaging, Biostatistics (2019) · doi:10.1093/biostatistics/kxz014
[32] Rauch, G.; Brannath, W.; Brückner, M.; Kieser, M., “The Average Hazard Ratio—A Good Effect Measure for Time-to-Event Endpoints When the Proportional Hazard Assumption Is Violated?, Methods of Information in Medicine, 57, 89-10 (2018) · doi:10.3414/ME17-01-0058
[33] Robertson, D. S.; Wason, J. M. S., “Family-Wise Error Control in Multi-Armed Response-Adaptive Trials, Biometrics, 75, 885-894 (2019) · Zbl 1436.62623 · doi:10.1111/biom.13042
[34] Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S. M.; Hida, T.; Kowalski, D. M.; Dols, M. C.; Cortinovis, D. L., “Atezolizumab Versus Docetaxel in Patients With Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial, The Lancet, 389, 255-265 (2017) · doi:10.1016/S0140-6736(16)32517-X
[35] Rosenblum, M.; Qian, T.; Du, Y.; Qiu, H.; Fisher, A., “Multiple Testing Procedures for Adaptive Enrichment Designs: Combining Group Sequential and Reallocation Approaches, Biostatistics, 17, 650-662 (2016) · doi:10.1093/biostatistics/kxw014
[36] Schemper, M.; Wakounig, S.; Heinze, G., “The Estimation of Average Hazard Ratios by Weighted Cox Regression, Statistics in Medicine, 28, 2473-2489 (2009) · doi:10.1002/sim.3623
[37] Schumacher, M.; Olschewski, M.; Schmoor, C., “The Impact of Heterogeneity on the Comparison of Survival Times, Statistics in Medicine, 6, 773-784 (1987) · doi:10.1002/sim.4780060708
[38] Seoane, J.; De Mattos-Arruda, L., “The Challenge of Intratumour Heterogeneity in Precision Medicine, Journal of Internal Medicine, 276, 41-51 (2014) · doi:10.1111/joim.12240
[39] Simon, N.; Simon, R., “Adaptive Enrichment Designs for Clinical Trials, Biostatistics, 14, 613-625 (2013) · doi:10.1093/biostatistics/kxt010
[40] Simon, R.; Geyer, S.; Subramanian, J.; Roychowdhury, S., “The Bayesian Basket Design for Genomic Variant-Driven Phase II Trials, Seminars in Oncology, 43, 13-18 (2016) · doi:10.1053/j.seminoncol.2016.01.002
[41] Smith, C. T.; Williamson, P. R.; Marson, A. G., “Investigating Heterogeneity in an Individual Patient Data Meta-Analysis of Time to Event Outcomes, Statistics in Medicine, 24, 1307-1319 (2005) · doi:10.1002/sim.2050
[42] Sparapani, R. A.; Logan, B. R.; McCulloch, R. E.; Laud, P. W., “Nonparametric Survival Analysis Using Bayesian Additive Regression Trees (BART), Statistics in Medicine, 35, 2741-2753 (2016) · doi:10.1002/sim.6893
[43] Thall, P. F.; Wathen, J. K.; Bekele, B. N.; Champlin, R. E.; Baker, L. O.; Benjamin, R. S., “Hierarchical Bayesian Approaches to Phase II Trials in Diseases With Multiple Subtypes, Statistics in Medicine, 22, 763-780 (2003) · doi:10.1002/sim.1399
[44] Trippa, L.; Alexander, B. M., “Bayesian Baskets: A Novel Design for Biomarker-Based Clinical Trials, Journal of Clinical Oncology, 35, 681-687 (2016)
[45] Urach, S.; Posch, M., “Multi-Arm Group Sequential Designs With a Simultaneous Stopping Rule, Statistics in Medicine, 35, 5536-555 (2016) · doi:10.1002/sim.7077
[46] U. S. Food and Drug Administration (FDA), Draft Guidance for Industry: Interacting With the FDA on Complex Innovative Trial Designs for Drugs and Biological Products (2019)
[47] Wang, R.; Lagakos, S. W.; Ware, J. H.; Hunter, D. J.; Drazen, J. M., “Statistics in Medicine—Reporting of Subgroup Analyses in Clinical Trials, New England Journal of Medicine, 357, 2189-2194 (2007) · doi:10.1056/NEJMsr077003
[48] Wathen, J. K.; Thall, P. F., “Bayesian Adaptive Model Selection for Optimizing Group Sequential Clinical Trials, Statistics in Medicine, 27, 5586-5604 (2008) · doi:10.1002/sim.3381
[49] Xu, Y.; Thall, P. F.; Hua, W.; Andersson, B. S., “Bayesian Non-Parametric Survival Regression for Optimizing Precision Dosing of Intravenous Busulfan in Allogeneic Stem Cell Transplantation, Journal of the Royal Statistical Society, Series C, 68, 809-828 (2019) · doi:10.1111/rssc.12331
[50] Ye, Y.; Li, A.; Liu, L.; Yao, B., “A Group Sequential Holm Procedure With Multiple Primary Endpoints, Statistics in Medicine, 32, 1112-1124 (2013) · doi:10.1002/sim.5700
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.