Omurov, T. D.; Alybaev, A. M. Regularization of a system of the first kind Volterra incorrect two dimensional equations. (English) Zbl 07540745 Adv. Differ. Equ. Control Process. 27, No. 1, 149-162 (2022). MSC: 35Q35 PDF BibTeX XML Cite \textit{T. D. Omurov} and \textit{A. M. Alybaev}, Adv. Differ. Equ. Control Process. 27, No. 1, 149--162 (2022; Zbl 07540745) Full Text: DOI OpenURL
Kucukoglu, Irem Implementation of computation formulas for certain classes of Apostol-type polynomials and some properties associated with these polynomials. (English) Zbl 07544718 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 1, 426-442 (2021). MSC: 05A15 11B83 33F05 65D20 11B37 11B73 05A19 PDF BibTeX XML Cite \textit{I. Kucukoglu}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 1, 426--442 (2021; Zbl 07544718) Full Text: DOI OpenURL
Lebedeva, A. V.; Ryabov, V. M. On regularization of the solution of integral equations of the first kind using quadrature formulas. (English. Russian original) Zbl 07485532 Vestn. St. Petersbg. Univ., Math. 54, No. 4, 361-365 (2021); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 593-599 (2021). MSC: 65Rxx 65-XX 65Fxx PDF BibTeX XML Cite \textit{A. V. Lebedeva} and \textit{V. M. Ryabov}, Vestn. St. Petersbg. Univ., Math. 54, No. 4, 361--365 (2021; Zbl 07485532); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 593--599 (2021) Full Text: DOI OpenURL
Shivanian, Elyas; Keshtkar, Mahdi; Fatahi, Hedayat Natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation via optimized Chebyshev polynomials with interior point algorithm. (Persian. English summary) Zbl 07481978 JAMM, J. Adv. Math. Model. 11, No. 1, 109-123 (2021). MSC: 34-XX 34Bxx 90-XX PDF BibTeX XML Cite \textit{E. Shivanian} et al., JAMM, J. Adv. Math. Model. 11, No. 1, 109--123 (2021; Zbl 07481978) Full Text: DOI OpenURL
Elías-Zúñiga, Alex; Palacios-Pineda, Luis Manuel; Jiménez-Cedeño, Isaac H.; Martínez-Romero, Oscar; Olvera Trejo, Daniel Equivalent power-form representation of the fractal Toda oscillator. (English) Zbl 1481.78022 Fractals 29, No. 2, Article ID 2150034, 10 p. (2021). MSC: 78A60 65L06 41A50 26A33 PDF BibTeX XML Cite \textit{A. Elías-Zúñiga} et al., Fractals 29, No. 2, Article ID 2150034, 10 p. (2021; Zbl 1481.78022) Full Text: DOI OpenURL
Qi, Feng; Guo, Bai-Ni Some properties of the Hermite polynomials. (English) Zbl 07442617 Georgian Math. J. 28, No. 6, 925-935 (2021). MSC: 33C45 11B83 26A06 26A09 26A24 33B10 33C47 34A05 PDF BibTeX XML Cite \textit{F. Qi} and \textit{B.-N. Guo}, Georgian Math. J. 28, No. 6, 925--935 (2021; Zbl 07442617) Full Text: DOI OpenURL
Feng, Fang; Han, Weimin; Huang, Jianguo The virtual element method for an obstacle problem of a Kirchhoff-love plate. (English) Zbl 07427967 Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106008, 18 p. (2021). MSC: 65Nxx 74Sxx 35Jxx PDF BibTeX XML Cite \textit{F. Feng} et al., Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106008, 18 p. (2021; Zbl 07427967) Full Text: DOI OpenURL
Dung, Vu Tien; Ha, Quan Thai Approximate solution for integral equations involving linear Toeplitz plus Hankel parts. (English) Zbl 1476.65338 Comput. Appl. Math. 40, No. 5, Paper No. 172, 20 p. (2021). MSC: 65R20 45E10 65J15 65J20 PDF BibTeX XML Cite \textit{V. T. Dung} and \textit{Q. T. Ha}, Comput. Appl. Math. 40, No. 5, Paper No. 172, 20 p. (2021; Zbl 1476.65338) Full Text: DOI OpenURL
Big-Alabo, Akuro; Ossia, Chinwuba Victor; Ekpruke, Emmanuel Ogheneochuko Exact analytical solution of a mechanical oscillator for phase transition involving spatially inhomogeneous distribution of the order parameter. (English) Zbl 1481.34004 Math. Methods Appl. Sci. 44, No. 16, 12317-12331 (2021). MSC: 34A05 34C15 34C25 33C75 PDF BibTeX XML Cite \textit{A. Big-Alabo} et al., Math. Methods Appl. Sci. 44, No. 16, 12317--12331 (2021; Zbl 1481.34004) Full Text: DOI OpenURL
Arabadzhyan, L. G. On the Volterra factorization of the Wiener-Hopf integral operator. (English. Russian original) Zbl 1475.45004 Math. Notes 110, No. 2, 161-166 (2021); translation from Mat. Zametki 110, No. 2, 163-169 (2021). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45E10 45P05 47A68 PDF BibTeX XML Cite \textit{L. G. Arabadzhyan}, Math. Notes 110, No. 2, 161--166 (2021; Zbl 1475.45004); translation from Mat. Zametki 110, No. 2, 163--169 (2021) Full Text: DOI OpenURL
Maleknejad, Khosrow; Kalalagh, Hamed Shahi Approximate solution of some nonlinear classes of Abel integral equations using hybrid expansion. (English) Zbl 1471.65223 Appl. Numer. Math. 159, 61-72 (2021). MSC: 65R20 45E10 PDF BibTeX XML Cite \textit{K. Maleknejad} and \textit{H. S. Kalalagh}, Appl. Numer. Math. 159, 61--72 (2021; Zbl 1471.65223) Full Text: DOI OpenURL
Dehbozorgi, Raziyeh; Maleknejad, Khosrow Direct operational vector scheme for first-kind nonlinear Volterra integral equations and its convergence analysis. (English) Zbl 1461.65264 Mediterr. J. Math. 18, No. 1, Paper No. 31, 22 p. (2021). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{R. Dehbozorgi} and \textit{K. Maleknejad}, Mediterr. J. Math. 18, No. 1, Paper No. 31, 22 p. (2021; Zbl 1461.65264) Full Text: DOI OpenURL
Gupta, Vijay; López-Pellicer, Manuel; Srivastava, H. M. Convergence estimates of a family of approximation operators of exponential type. (English) Zbl 07541523 Filomat 34, No. 13, 4329-4341 (2020). MSC: 41A35 41A36 33C10 PDF BibTeX XML Cite \textit{V. Gupta} et al., Filomat 34, No. 13, 4329--4341 (2020; Zbl 07541523) Full Text: DOI OpenURL
Kucukoglu, Irem Some new identities and formulas for higher-order combinatorial-type numbers and polynomials. (English) Zbl 07539064 Filomat 34, No. 2, 551-558 (2020). MSC: 05A10 05A15 11B83 26C05 30D05 35A99 PDF BibTeX XML Cite \textit{I. Kucukoglu}, Filomat 34, No. 2, 551--558 (2020; Zbl 07539064) Full Text: DOI OpenURL
Omurov, T. D.; Alybaev, A. M.; Omurov, M. T. Solution of multidimensional inverse problem for third-order differential equation. (English) Zbl 1479.35692 Adv. Differ. Equ. Control Process. 23, No. 2, 125-137 (2020). MSC: 35Q35 PDF BibTeX XML Cite \textit{T. D. Omurov} et al., Adv. Differ. Equ. Control Process. 23, No. 2, 125--137 (2020; Zbl 1479.35692) Full Text: DOI OpenURL
Zhang, Xinming; Liu, Yibo An improved regularization bat algorithm for solving the first kind of Fredholm integral equation. (Chinese. English summary) Zbl 07403477 Acta Anal. Funct. Appl. 22, No. 3, 141-149 (2020). MSC: 65R30 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Y. Liu}, Acta Anal. Funct. Appl. 22, No. 3, 141--149 (2020; Zbl 07403477) Full Text: DOI OpenURL
Sweilam, N. H.; Nagy, A. M.; El-Sayed, A. A. Sinc-Chebyshev collocation method for time-fractional order telegraph equation. (English) Zbl 1480.65295 Appl. Comput. Math. 19, No. 2, 162-174 (2020). MSC: 65M70 35K05 35R11 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Appl. Comput. Math. 19, No. 2, 162--174 (2020; Zbl 1480.65295) Full Text: Link OpenURL
Noeiaghdam, S.; Sidorov, D.; Sizikov, V.; Sidorov, N. Control of accuracy of Taylor-collocation method to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method. (English) Zbl 1463.65432 Appl. Comput. Math. 19, No. 1, 87-105 (2020). MSC: 65R20 45D05 45E10 PDF BibTeX XML Cite \textit{S. Noeiaghdam} et al., Appl. Comput. Math. 19, No. 1, 87--105 (2020; Zbl 1463.65432) Full Text: arXiv Link OpenURL
Fang, Ximing; Lin, Furong Solving the Fredholm integral equation of the first kind by the complementarity method. (Chinese. English summary) Zbl 1463.65417 Numer. Math., Nanjing 41, No. 4, 289-301 (2019). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{X. Fang} and \textit{F. Lin}, Numer. Math., Nanjing 41, No. 4, 289--301 (2019; Zbl 1463.65417) OpenURL
Taogetusang; Yi, Lina The new method of solving solutions of the \( (3+1)\)-dimension Klein-Gordon equation. (Chinese. English summary) Zbl 1449.35385 Math. Pract. Theory 49, No. 23, 162-170 (2019). MSC: 35Q53 35B10 35C08 PDF BibTeX XML Cite \textit{Taogetusang} and \textit{L. Yi}, Math. Pract. Theory 49, No. 23, 162--170 (2019; Zbl 1449.35385) OpenURL
Peschanskii, A. I. Integral equations of curvilinear convolution type with hypergeometric function in a kernel. (English. Russian original) Zbl 1442.30036 Russ. Math. 63, No. 9, 43-54 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 9, 50-62 (2019). MSC: 30E20 45E05 PDF BibTeX XML Cite \textit{A. I. Peschanskii}, Russ. Math. 63, No. 9, 43--54 (2019; Zbl 1442.30036); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 9, 50--62 (2019) Full Text: DOI OpenURL
Qi, Feng; Liu, Ai-Qi; Lim, Dongkyu Explicit expressions related to degenerate Cauchy numbers and their generating function. (English) Zbl 1429.11045 Singh, Jagdev (ed.) et al., Mathematical modelling, applied analysis and computation. Selected papers of the first international conference, ICMMAAC 2018, JECRC University, Jaipur, India, July 6–8, 2018. Singapore: Springer. Springer Proc. Math. Stat. 272, 41-52 (2019). MSC: 11B68 11B83 33B10 34A05 34A34 PDF BibTeX XML Cite \textit{F. Qi} et al., Springer Proc. Math. Stat. 272, 41--52 (2019; Zbl 1429.11045) Full Text: DOI HAL OpenURL
Barnett, Alex; Epstein, Charles L.; Greengard, Leslie; Jiang, Shidong; Wang, Jun Explicit unconditionally stable methods for the heat equation via potential theory. (English) Zbl 1427.65416 Pure Appl. Anal. 1, No. 4, 709-742 (2019). MSC: 65R20 45D05 65F15 65M12 35K05 45E10 PDF BibTeX XML Cite \textit{A. Barnett} et al., Pure Appl. Anal. 1, No. 4, 709--742 (2019; Zbl 1427.65416) Full Text: DOI arXiv OpenURL
Qi, Feng Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Mittag-Leffler polynomials. (English) Zbl 1460.34008 Korean J. Math. 27, No. 2, 417-423 (2019). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A05 34A30 33E12 PDF BibTeX XML Cite \textit{F. Qi}, Korean J. Math. 27, No. 2, 417--423 (2019; Zbl 1460.34008) Full Text: DOI OpenURL
Ageev, A. L.; Antonova, T. V. Estimates of characteristics of localization methods for discontinuities of the first kind of a noisy function. (Russian, English) Zbl 1438.65019 Sib. Zh. Ind. Mat. 22, No. 1, 3-12 (2019); translation in J. Appl. Ind. Math. 13, No. 1, 1-10 (2019). MSC: 65D15 65J15 65J20 94A12 PDF BibTeX XML Cite \textit{A. L. Ageev} and \textit{T. V. Antonova}, Sib. Zh. Ind. Mat. 22, No. 1, 3--12 (2019; Zbl 1438.65019); translation in J. Appl. Ind. Math. 13, No. 1, 1--10 (2019) Full Text: DOI OpenURL
Qi, Feng; Niu, Da-Wei; Guo, Bai-Ni Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind. (English) Zbl 1429.34025 AIMS Math. 4, No. 2, 170-175 (2019). MSC: 34A30 11A25 11B68 11B73 11B83 PDF BibTeX XML Cite \textit{F. Qi} et al., AIMS Math. 4, No. 2, 170--175 (2019; Zbl 1429.34025) Full Text: DOI OpenURL
Paul, Swaraj; Panja, M. M.; Mandal, B. N. Approximate solution of first kind singular integral equation with generalized kernel using Legendre multiwavelets. (English) Zbl 1438.65339 Comput. Appl. Math. 38, No. 1, Paper No. 23, 24 p. (2019). MSC: 65R20 45E05 65D15 65T60 PDF BibTeX XML Cite \textit{S. Paul} et al., Comput. Appl. Math. 38, No. 1, Paper No. 23, 24 p. (2019; Zbl 1438.65339) Full Text: DOI OpenURL
Chakhkiev, Magomed A.; Sulyan, Gagik S.; Ziroyan, Manya A.; Tretyakov, Nikolay P.; Mouhammad, Saif A. Integral equation for the number of integer points in a circle. (English) Zbl 1442.11101 Ital. J. Pure Appl. Math. 41, 522-525 (2019). MSC: 11H06 45H05 44A15 PDF BibTeX XML Cite \textit{M. A. Chakhkiev} et al., Ital. J. Pure Appl. Math. 41, 522--525 (2019; Zbl 1442.11101) Full Text: Link OpenURL
Srivastava, H. M.; Ricci, Paolo Emilio; Natalini, Pierpaolo A family of complex Appell polynomial sets. (English) Zbl 1435.11058 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2359-2371 (2019). MSC: 11B83 11B68 33D99 26C05 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2359--2371 (2019; Zbl 1435.11058) Full Text: DOI OpenURL
Kim, Taekyun; Kim, Dae San Differential equations associated with degenerate Changhee numbers of the second kind. (English) Zbl 07092211 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 1785-1793 (2019). MSC: 34A34 34A05 05A19 11B83 PDF BibTeX XML Cite \textit{T. Kim} and \textit{D. S. Kim}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 1785--1793 (2019; Zbl 07092211) Full Text: DOI OpenURL
Saw, Vijay; Kumar, Sushil Numerical solution of fraction Bagley-Torvik boundary value problem based on Chebyshev collocation method. (English) Zbl 1462.65095 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 68, 11 p. (2019). MSC: 65L60 34A08 65L10 65L20 PDF BibTeX XML Cite \textit{V. Saw} and \textit{S. Kumar}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 68, 11 p. (2019; Zbl 1462.65095) Full Text: DOI OpenURL
Bahmanpour, Maryam; Tavassoli Kajani, Majid; Maleki, Mohammad Solving Fredholm integral equations of the first kind using Müntz wavelets. (English) Zbl 1447.65180 Appl. Numer. Math. 143, 159-171 (2019). Reviewer: Kai Diethelm (Schweinfurt) MSC: 65R20 45B05 65T60 PDF BibTeX XML Cite \textit{M. Bahmanpour} et al., Appl. Numer. Math. 143, 159--171 (2019; Zbl 1447.65180) Full Text: DOI OpenURL
Shivanian, Elyas; Kazemi, Ramin; Keshtkar, Mahdi Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation by a novel intelligent computational approach using optimized Chebyshev polynomials. (English) Zbl 07048615 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 2, 153-166 (2019). MSC: 34B15 34B60 PDF BibTeX XML Cite \textit{E. Shivanian} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 2, 153--166 (2019; Zbl 07048615) Full Text: DOI OpenURL
Díaz de Alba, P.; Fermo, L.; van der Mee, C.; Rodriguez, G. Recovering the electrical conductivity of the soil via a linear integral model. (English) Zbl 1410.65119 J. Comput. Appl. Math. 352, 132-145 (2019). MSC: 65F22 65R20 86A22 45B05 PDF BibTeX XML Cite \textit{P. Díaz de Alba} et al., J. Comput. Appl. Math. 352, 132--145 (2019; Zbl 1410.65119) Full Text: DOI OpenURL
Dzhamalov, Z. S. The nonlocal boundary value problem with constant coefficients for the mixed type of equation of the first kind in a plane. (English) Zbl 07148981 Malays. J. Math. Sci. 12, No. 1, 49-62 (2018). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{Z. S. Dzhamalov}, Malays. J. Math. Sci. 12, No. 1, 49--62 (2018; Zbl 07148981) Full Text: Link OpenURL
Qi, Feng; Wang, Jing-Lin; Guo, Bai-Ni Simplifying and finding ordinary differential equations in terms of the Stirling numbers. (English) Zbl 1440.11012 Korean J. Math. 26, No. 4, 675-681 (2018). MSC: 11B73 34A05 34A34 PDF BibTeX XML Cite \textit{F. Qi} et al., Korean J. Math. 26, No. 4, 675--681 (2018; Zbl 1440.11012) Full Text: DOI OpenURL
Qi, Feng Simplifying coefficients in a family of nonlinear ordinary differential equations. (English) Zbl 1437.11038 Acta Comment. Univ. Tartu. Math. 22, No. 2, 293-297 (2018). MSC: 11B73 11B83 34A05 PDF BibTeX XML Cite \textit{F. Qi}, Acta Comment. Univ. Tartu. Math. 22, No. 2, 293--297 (2018; Zbl 1437.11038) Full Text: DOI OpenURL
Guo, Jiaqiao; Zhang, Xinming; Ma, Ling A modified Tikhonov regularization method for the solution of Fredholm equations of the first kind. (Chinese. English summary) Zbl 1424.65249 Math. Pract. Theory 48, No. 18, 244-250 (2018). MSC: 65R20 45B05 65R30 PDF BibTeX XML Cite \textit{J. Guo} et al., Math. Pract. Theory 48, No. 18, 244--250 (2018; Zbl 1424.65249) OpenURL
Komatsu, Takao; Szalay, László A new formula for hyper-Fibonacci numbers, and the number of occurrences. (English) Zbl 1424.11044 Turk. J. Math. 42, No. 3, 993-1004 (2018). MSC: 11B39 11D61 PDF BibTeX XML Cite \textit{T. Komatsu} and \textit{L. Szalay}, Turk. J. Math. 42, No. 3, 993--1004 (2018; Zbl 1424.11044) Full Text: DOI OpenURL
Peschansky, A. I. Integral equations of curvilinear convolution type over the circumference with power kernels. (Russian. English summary) Zbl 1409.45005 Din. Sist., Simferopol’ 8(36), No. 2, 187-193 (2018). MSC: 45E10 PDF BibTeX XML Cite \textit{A. I. Peschansky}, Din. Sist., Simferopol' 8(36), No. 2, 187--193 (2018; Zbl 1409.45005) OpenURL
Belov, A. A.; Kalitkin, N. N. Solution of the Fredholm equation of the first kind by mesh method with Tikhonov regularization. (Russian. English summary) Zbl 1424.45003 Mat. Model. 30, No. 8, 67-88 (2018). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 45B05 45A05 65R30 85A15 PDF BibTeX XML Cite \textit{A. A. Belov} and \textit{N. N. Kalitkin}, Mat. Model. 30, No. 8, 67--88 (2018; Zbl 1424.45003) Full Text: Link OpenURL
Fariborzi Araghi, Mohammad Ali; Noeiaghdam, Samad Homotopy regularization method to solve the singular Volterra integral equations of the first kind. (English) Zbl 1407.65324 Jordan J. Math. Stat. 11, No. 1, 1-12 (2018). MSC: 65R20 45E10 PDF BibTeX XML Cite \textit{M. A. Fariborzi Araghi} and \textit{S. Noeiaghdam}, Jordan J. Math. Stat. 11, No. 1, 1--12 (2018; Zbl 1407.65324) Full Text: Link OpenURL
Qi, Feng; Zhao, Jiao-Lian Some properties of the Bernoulli numbers of the second kind and their generating function. (English) Zbl 1406.11017 Bull. Korean Math. Soc. 55, No. 6, 1909-1920 (2018). MSC: 11B68 11B37 11B73 34A05 34A30 34A34 PDF BibTeX XML Cite \textit{F. Qi} and \textit{J.-L. Zhao}, Bull. Korean Math. Soc. 55, No. 6, 1909--1920 (2018; Zbl 1406.11017) Full Text: Link OpenURL
Chapko, Roman; Mindrinos, Leonidas On the numerical solution of the exterior elastodynamic problem by a boundary integral equation method. (English) Zbl 1408.65093 J. Integral Equations Appl. 30, No. 4, 521-542 (2018). MSC: 65N35 35L20 42C10 45E05 33C45 65D32 74S15 65R20 35Q70 PDF BibTeX XML Cite \textit{R. Chapko} and \textit{L. Mindrinos}, J. Integral Equations Appl. 30, No. 4, 521--542 (2018; Zbl 1408.65093) Full Text: DOI arXiv Euclid OpenURL
Frankel, J. I.; Keyhani, M. Response function formulation for inverse heat conduction: concept. (English) Zbl 1401.80003 J. Eng. Math. 110, 75-95 (2018). MSC: 80A23 45D05 35K05 42A38 44A10 65R20 PDF BibTeX XML Cite \textit{J. I. Frankel} and \textit{M. Keyhani}, J. Eng. Math. 110, 75--95 (2018; Zbl 1401.80003) Full Text: DOI OpenURL
Kim, Daeyeoul; Kim, So Eun; So, Ji Suk A study of sum of divisor functions and Stirling number of the first kind derived from Liouville functions. (English) Zbl 1442.11012 J. Appl. Math. Inform. 36, No. 5-6, 435-446 (2018). MSC: 11A25 11Y70 11B73 33E30 PDF BibTeX XML Cite \textit{D. Kim} et al., J. Appl. Math. Inform. 36, No. 5--6, 435--446 (2018; Zbl 1442.11012) Full Text: DOI OpenURL
Apartsin, A. S.; Sidler, I. V. On the test Volterra equations of the first kind in the integral models of developing systems. (English. Russian original) Zbl 1397.65312 Autom. Remote Control 79, No. 4, 604-616 (2018); translation from Avtom. Telemekh. 2018, No. 4, 31-45 (2018). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{A. S. Apartsin} and \textit{I. V. Sidler}, Autom. Remote Control 79, No. 4, 604--616 (2018; Zbl 1397.65312); translation from Avtom. Telemekh. 2018, No. 4, 31--45 (2018) Full Text: DOI OpenURL
Dmitriev, V. I.; Dmitrieva, I. V.; Osokin, N. A. Solution of an integral equation of the first kind with a logarithmic kernel. (English. Russian original) Zbl 1397.65315 Comput. Math. Model. 29, No. 3, 307-318 (2018); translation from Prikl. Mat. Inf. 56, 61-71 (2017). MSC: 65R20 PDF BibTeX XML Cite \textit{V. I. Dmitriev} et al., Comput. Math. Model. 29, No. 3, 307--318 (2018; Zbl 1397.65315); translation from Prikl. Mat. Inf. 56, 61--71 (2017) Full Text: DOI OpenURL
Qi, Feng; Wang, Jing-Lin; Guo, Bai-Ni Simplifying differential equations concerning degenerate Bernoulli and Euler numbers. (English) Zbl 1391.34028 Trans. A. Razmadze Math. Inst. 172, No. 1, 90-94 (2018). MSC: 34A34 11B68 11B73 PDF BibTeX XML Cite \textit{F. Qi} et al., Trans. A. Razmadze Math. Inst. 172, No. 1, 90--94 (2018; Zbl 1391.34028) Full Text: DOI OpenURL
Solodusha, S. V. Numerical solution of a class of systems of Volterra polynomial equations of the first kind. (Russian, English) Zbl 1413.65492 Sib. Zh. Vychisl. Mat. 21, No. 1, 117-126 (2018); translation in Numer. Analysis Appl. 11, No. 1, 89-97 (2018). MSC: 65R20 45D05 45G15 PDF BibTeX XML Cite \textit{S. V. Solodusha}, Sib. Zh. Vychisl. Mat. 21, No. 1, 117--126 (2018; Zbl 1413.65492); translation in Numer. Analysis Appl. 11, No. 1, 89--97 (2018) Full Text: DOI OpenURL
Luo, Xingjun; Ouyang, Zhaofu; Zeng, Chunmei; Li, Fanchun Multiscale Galerkin methods for the nonstationary iterated Tikhonov method with a modified posteriori parameter selection. (English) Zbl 1382.65469 J. Inverse Ill-Posed Probl. 26, No. 1, 109-120 (2018). MSC: 65R20 45B05 65R30 PDF BibTeX XML Cite \textit{X. Luo} et al., J. Inverse Ill-Posed Probl. 26, No. 1, 109--120 (2018; Zbl 1382.65469) Full Text: DOI OpenURL
Khosravian-Arab, Hassan; Dehghan, Mehdi; Eslahchi, M. R. Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications. (English) Zbl 1415.65177 J. Comput. Phys. 338, 527-566 (2017). MSC: 65L60 65L05 34A08 PDF BibTeX XML Cite \textit{H. Khosravian-Arab} et al., J. Comput. Phys. 338, 527--566 (2017; Zbl 1415.65177) Full Text: DOI OpenURL
Maleknejad, K.; Saeedipoor, E. An efficient method based on hybrid functions for Fredholm integral equation of the first kind with convergence analysis. (English) Zbl 1411.65169 Appl. Math. Comput. 304, 93-102 (2017). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{K. Maleknejad} and \textit{E. Saeedipoor}, Appl. Math. Comput. 304, 93--102 (2017; Zbl 1411.65169) Full Text: DOI OpenURL
Beléndez, Augusto; Arribas, Enrique; Beléndez, Tarsicio; Pascual, Carolina; Gimeno, Encarnación; Álvarez, Mariela L. Closed-form exact solutions for the unforced quintic nonlinear oscillator. (English) Zbl 1401.34002 Adv. Math. Phys. 2017, Article ID 7396063, 14 p. (2017). MSC: 34A05 34C15 34C25 PDF BibTeX XML Cite \textit{A. Beléndez} et al., Adv. Math. Phys. 2017, Article ID 7396063, 14 p. (2017; Zbl 1401.34002) Full Text: DOI OpenURL
Yang, Suhua; Ouyang, Zhaofu; Luo, Xingjun; Peng, Yubing Fast multiscale collocation methods for solving iterated Lavrentiev equations. (Chinese. English summary) Zbl 1413.65498 Chin. Ann. Math., Ser. A 38, No. 4, 419-432 (2017). MSC: 65R20 45B05 65R30 PDF BibTeX XML Cite \textit{S. Yang} et al., Chin. Ann. Math., Ser. A 38, No. 4, 419--432 (2017; Zbl 1413.65498) Full Text: DOI OpenURL
Stepanov, V. N. The method of spherical harmonics for integral transforms on a sphere. (English) Zbl 1399.47127 Mat. Strukt. Model. 42, 36-48 (2017). MSC: 47G10 44A12 53C65 PDF BibTeX XML Cite \textit{V. N. Stepanov}, Mat. Strukt. Model. 42, 36--48 (2017; Zbl 1399.47127) Full Text: Link OpenURL
Tanana, V. P.; Sidikova, A. I. On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind. (English. Russian original) Zbl 1405.65178 Proc. Steklov Inst. Math. 299, Suppl. 1, S217-S224 (2017); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 1, 263-270 (2016). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45B05 65R30 PDF BibTeX XML Cite \textit{V. P. Tanana} and \textit{A. I. Sidikova}, Proc. Steklov Inst. Math. 299, S217--S224 (2017; Zbl 1405.65178); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 1, 263--270 (2016) Full Text: DOI OpenURL
Chapko, Roman; Johansson, B. Tomas Numerical solution of the Dirichlet initial boundary value problem for the heat equation in exterior 3-dimensional domains using integral equations. (English) Zbl 1453.65293 J. Eng. Math. 103, 23-37 (2017). MSC: 65M38 65R20 PDF BibTeX XML Cite \textit{R. Chapko} and \textit{B. T. Johansson}, J. Eng. Math. 103, 23--37 (2017; Zbl 1453.65293) Full Text: DOI OpenURL
Burkotová, Jana; Rachunková, Irena; Weinmüller, Ewa B. On singular BVPs with nonsmooth data: convergence of the collocation schemes. (English) Zbl 1421.65021 BIT 57, No. 4, 1153-1184 (2017). Reviewer: Fernando Casas (Castellon) MSC: 65L60 65L20 65L05 65L10 PDF BibTeX XML Cite \textit{J. Burkotová} et al., BIT 57, No. 4, 1153--1184 (2017; Zbl 1421.65021) Full Text: DOI OpenURL
Kashirin, A. A.; Taltykina, M. Yu. On the existence of mosaic-skeleton approximations for discrete analogues of integral operators. (English. Russian original) Zbl 1381.65095 Comput. Math. Math. Phys. 57, No. 9, 1404-1415 (2017); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 9, 1421-1432 (2017). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N38 65F10 35J05 PDF BibTeX XML Cite \textit{A. A. Kashirin} and \textit{M. Yu. Taltykina}, Comput. Math. Math. Phys. 57, No. 9, 1404--1415 (2017; Zbl 1381.65095); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 9, 1421--1432 (2017) Full Text: DOI OpenURL
Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J. Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics. (English) Zbl 1379.65097 Inverse Probl. 33, No. 11, Article ID 115007, 18 p. (2017). MSC: 65R20 45A05 45B05 68T05 65R30 PDF BibTeX XML Cite \textit{L.-F. Arsenault} et al., Inverse Probl. 33, No. 11, Article ID 115007, 18 p. (2017; Zbl 1379.65097) Full Text: DOI OpenURL
Vasin, V. V.; Skorik, G. G. Solution of the deconvolution problem in the general statement. (English. Russian original) Zbl 1381.65103 Proc. Steklov Inst. Math. 297, Suppl. 1, S211-S222 (2017); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 2, 79-90 (2016). Reviewer: Alexander N. Tynda (Penza) MSC: 65R30 45D05 65R20 PDF BibTeX XML Cite \textit{V. V. Vasin} and \textit{G. G. Skorik}, Proc. Steklov Inst. Math. 297, S211--S222 (2017; Zbl 1381.65103); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 2, 79--90 (2016) Full Text: DOI OpenURL
Taogetusang The new complexion solutions of the \(\left({2 + 1} \right)\) dimension modified Zakharov-Kuznetsov equation. (Chinese. English summary) Zbl 1389.35269 Appl. Math., Ser. A (Chin. Ed.) 32, No. 1, 33-40 (2017). MSC: 35Q51 35B10 35C08 PDF BibTeX XML Cite \textit{Taogetusang}, Appl. Math., Ser. A (Chin. Ed.) 32, No. 1, 33--40 (2017; Zbl 1389.35269) OpenURL
Srivastava, H. M.; Kucukoğlu, Irem; Simsek, Yilmaz Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials. (English) Zbl 1369.05009 J. Number Theory 181, 117-146 (2017). MSC: 05A10 05A15 11B37 11B39 11B68 11B83 11M35 26C05 26C10 33C05 34A99 35A99 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Number Theory 181, 117--146 (2017; Zbl 1369.05009) Full Text: DOI OpenURL
Schiefeneder, Daniela; Haltmeier, Markus The Radon transform over cones with vertices on the sphere and orthogonal axes. (English) Zbl 1371.44001 SIAM J. Appl. Math. 77, No. 4, 1335-1351 (2017). MSC: 44A12 92C55 45E10 65R10 45D05 PDF BibTeX XML Cite \textit{D. Schiefeneder} and \textit{M. Haltmeier}, SIAM J. Appl. Math. 77, No. 4, 1335--1351 (2017; Zbl 1371.44001) Full Text: DOI arXiv OpenURL
Hasanov Hasanoğlu, Alemdar; Romanov, Vladimir G. Introduction to inverse problems for differential equations. (English) Zbl 1385.65053 Cham: Springer (ISBN 978-3-319-62796-0/hbk; 978-3-319-62797-7/ebook). xiii, 261 p. (2017). Reviewer: Robert Plato (Siegen) MSC: 65M32 65R20 35-02 34A55 35R30 44A12 47A52 47J06 47J25 65N21 78A46 80A23 35Q61 65-02 65J22 65J20 PDF BibTeX XML Cite \textit{A. Hasanov Hasanoğlu} and \textit{V. G. Romanov}, Introduction to inverse problems for differential equations. Cham: Springer (2017; Zbl 1385.65053) Full Text: DOI OpenURL
Burkotová, Jana; Rachunková, Irena; Weinmüller, Ewa B. On singular BVPs with nonsmooth data: analysis of the linear case with variable coefficient matrix. (English) Zbl 1357.65098 Appl. Numer. Math. 114, 77-96 (2017). MSC: 65L10 34B05 PDF BibTeX XML Cite \textit{J. Burkotová} et al., Appl. Numer. Math. 114, 77--96 (2017; Zbl 1357.65098) Full Text: DOI OpenURL
Plato, Robert The regularizing properties of multistep methods for first kind Volterra integral equations with smooth kernels. (English) Zbl 1355.65183 Comput. Methods Appl. Math. 17, No. 1, 139-159 (2017). MSC: 65R20 45D05 65R30 PDF BibTeX XML Cite \textit{R. Plato}, Comput. Methods Appl. Math. 17, No. 1, 139--159 (2017; Zbl 1355.65183) Full Text: DOI arXiv OpenURL
Torabi, Seyed Musa; Tari Marzabad, Abolfazl Numerical solution of two-dimensional integral equations of the first kind by multi-step methods. (English) Zbl 1424.65256 Comput. Methods Differ. Equ. 4, No. 2, 128-138 (2016). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{S. M. Torabi} and \textit{A. Tari Marzabad}, Comput. Methods Differ. Equ. 4, No. 2, 128--138 (2016; Zbl 1424.65256) Full Text: Link OpenURL
Maklakov, Vladimir Nikolaevich The evaluation of the order of approximation of the matrix method for numerical integration of the boundary value problems for systems of linear non-homogeneous ordinary differential equations of the second order with variable coefficients. I: Boundary value problems with boundary conditions of the first kind. (Russian. English summary) Zbl 1424.65106 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 20, No. 3, 389-409 (2016). MSC: 65L10 34B99 PDF BibTeX XML Cite \textit{V. N. Maklakov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 20, No. 3, 389--409 (2016; Zbl 1424.65106) Full Text: DOI MNR OpenURL
Michel, Volker; Orzlowski, Sarah On the null space of a class of Fredholm integral equations of the first kind. (English) Zbl 1351.45001 J. Inverse Ill-Posed Probl. 24, No. 6, 687-710 (2016). MSC: 45B05 45Q05 33C45 33C50 33C55 78A30 86A20 86A22 PDF BibTeX XML Cite \textit{V. Michel} and \textit{S. Orzlowski}, J. Inverse Ill-Posed Probl. 24, No. 6, 687--710 (2016; Zbl 1351.45001) Full Text: DOI OpenURL
Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim Accurate computation of surface stresses and forces with immersed boundary methods. (English) Zbl 1349.76466 J. Comput. Phys. 321, 860-873 (2016). MSC: 76M20 65M06 74F10 76D05 74S20 PDF BibTeX XML Cite \textit{A. Goza} et al., J. Comput. Phys. 321, 860--873 (2016; Zbl 1349.76466) Full Text: DOI arXiv OpenURL
McCoy, B. M.; Maillard, J-M The anisotropic Ising correlations as elliptic integrals: duality and differential equations. (English) Zbl 1353.82015 J. Phys. A, Math. Theor. 49, No. 43, Article ID 434004, 24 p. (2016). MSC: 82B20 33E05 35Q82 PDF BibTeX XML Cite \textit{B. M. McCoy} and \textit{J-M Maillard}, J. Phys. A, Math. Theor. 49, No. 43, Article ID 434004, 24 p. (2016; Zbl 1353.82015) Full Text: DOI arXiv OpenURL
De los Reyes, Juan Carlos; Herzog, Roland; Meyer, Christian Optimal control of static elastoplasticity in primal formulation. (English) Zbl 1386.49029 SIAM J. Control Optim. 54, No. 6, 3016-3039 (2016). MSC: 49K20 49J20 49K27 74C05 PDF BibTeX XML Cite \textit{J. C. De los Reyes} et al., SIAM J. Control Optim. 54, No. 6, 3016--3039 (2016; Zbl 1386.49029) Full Text: DOI Link OpenURL
Solodusha, S. V.; Mokry, I. V. A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features. (English) Zbl 1352.65656 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 9, No. 3, 119-129 (2016). MSC: 65R20 45D05 45A05 65Y04 PDF BibTeX XML Cite \textit{S. V. Solodusha} and \textit{I. V. Mokry}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 9, No. 3, 119--129 (2016; Zbl 1352.65656) Full Text: DOI arXiv OpenURL
Gockenbach, Mark S. Linear inverse problems and Tikhonov regularization. (English) Zbl 1367.65085 The Carus Mathematical Monographs 32. Washington, DC: Mathematical Association of America (MAA) (ISBN 978-0-88385-141-8/hbk; 978-1-61444-029-1/ebook). xiii, 321 p. (2016). Reviewer: Robert Plato (Siegen) MSC: 65J22 65-01 44A12 47A52 65F22 65J20 65L08 65L09 65R30 65R32 65J10 65R10 45B05 45A05 92C55 PDF BibTeX XML Cite \textit{M. S. Gockenbach}, Linear inverse problems and Tikhonov regularization. Washington, DC: Mathematical Association of America (MAA) (2016; Zbl 1367.65085) OpenURL
Muftahov, Il’dar Rinatovich; Sidorov, Denis Nikolaevich; Sidorov, Nikolaĭ Aleksandrovich Lavrentiev regularization of integral equations of the first kind in the space of continuous functions. (Russian. English summary) Zbl 1348.45001 Izv. Irkutsk. Gos. Univ., Ser. Mat. 15, 62-77 (2016). MSC: 45D05 47A52 PDF BibTeX XML Cite \textit{I. R. Muftahov} et al., Izv. Irkutsk. Gos. Univ., Ser. Mat. 15, 62--77 (2016; Zbl 1348.45001) Full Text: Link OpenURL
Neggal, Billel; Boussetila, Nadjib; Rebbani, Faouzia Projected Tikhonov regularization method for Fredholm integral equations of the first kind. (English) Zbl 1347.65198 J. Inequal. Appl. 2016, Paper No. 195, 21 p. (2016). MSC: 65R20 65R30 45B05 PDF BibTeX XML Cite \textit{B. Neggal} et al., J. Inequal. Appl. 2016, Paper No. 195, 21 p. (2016; Zbl 1347.65198) Full Text: DOI OpenURL
Liang, Hui; Brunner, Hermann Integral-algebraic equations: Theory of collocation methods. II. (English) Zbl 1347.65196 SIAM J. Numer. Anal. 54, No. 4, 2640-2663 (2016). MSC: 65R20 65L80 45D05 PDF BibTeX XML Cite \textit{H. Liang} and \textit{H. Brunner}, SIAM J. Numer. Anal. 54, No. 4, 2640--2663 (2016; Zbl 1347.65196) Full Text: DOI OpenURL
Tanana, V. P.; Vishnyakov, E. Yu.; Sidikova, A. I. An approximate solution of a Fredholm integral equation of the first kind by the residual method. (Russian, English) Zbl 1349.65722 Sib. Zh. Vychisl. Mat. 19, No. 1, 97-105 (2016); translation in Numer. Analysis Appl. 9, No. 1, 74-81 (2016). MSC: 65R20 65R30 45B05 65M32 35K05 35R30 PDF BibTeX XML Cite \textit{V. P. Tanana} et al., Sib. Zh. Vychisl. Mat. 19, No. 1, 97--105 (2016; Zbl 1349.65722); translation in Numer. Analysis Appl. 9, No. 1, 74--81 (2016) Full Text: DOI OpenURL
Han, Houde; Lee, Yingde; Yin, Dongsheng; Chen, Zhengzong The necessary and sufficient condition for the existence and uniqueness of a system of Fredholm integral equations of the first kind. (Chinese. English summary) Zbl 07449387 Sci. Sin., Math. 45, No. 8, 1231-1248 (2015). MSC: 45B05 35J05 PDF BibTeX XML Cite \textit{H. Han} et al., Sci. Sin., Math. 45, No. 8, 1231--1248 (2015; Zbl 07449387) Full Text: DOI OpenURL
Solodusha, Svetlana Vital’evna Application of numerical methods for the Volterra equations of the first kind that appear in an inverse boundary-value problem of heat conduction. (Russian. English summary) Zbl 1344.45002 Izv. Irkutsk. Gos. Univ., Ser. Mat. 11, 96-105 (2015). MSC: 45D05 80A20 PDF BibTeX XML Cite \textit{S. V. Solodusha}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 11, 96--105 (2015; Zbl 1344.45002) Full Text: Link OpenURL
Bukhshtaber, V. M.; Tertychnyi, S. I. On a remarkable sequence of Bessel matrices. (English. Russian original) Zbl 1345.15008 Math. Notes 98, No. 5, 714-724 (2015); translation from Mat. Zametki 98, No. 5, 651-663 (2015). Reviewer: Frank Uhlig (Auburn) MSC: 15B05 34A25 33C10 PDF BibTeX XML Cite \textit{V. M. Bukhshtaber} and \textit{S. I. Tertychnyi}, Math. Notes 98, No. 5, 714--724 (2015; Zbl 1345.15008); translation from Mat. Zametki 98, No. 5, 651--663 (2015) Full Text: DOI OpenURL
Mészáros, A. R.; Shamseddine, K. On the solutions of linear ordinary differential equations and Bessel-type special functions on the Levi-Civita field. (English) Zbl 1339.26077 J. Contemp. Math. Anal., Armen. Acad. Sci. 50, No. 2, 53-62 (2015) and Izv. Nats. Akad. Nauk Armen., Mat. 50, No. 2, 53-68 (2015). MSC: 26E10 34A30 33C10 PDF BibTeX XML Cite \textit{A. R. Mészáros} and \textit{K. Shamseddine}, J. Contemp. Math. Anal., Armen. Acad. Sci. 50, No. 2, 53--62 (2015; Zbl 1339.26077) Full Text: DOI OpenURL
Muftahov, I. R.; Sidorov, D. N.; Sidorov, N. A. On perturbation method for the first kind equations: regularization and application. (English) Zbl 1342.47018 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 8, No. 2, 69-80 (2015). MSC: 47A52 65R30 PDF BibTeX XML Cite \textit{I. R. Muftahov} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 8, No. 2, 69--80 (2015; Zbl 1342.47018) Full Text: DOI arXiv OpenURL
Yüzbaşı, Şuayip A collocation method based on the Bessel functions of the first kind for singular perturbated differential equations and residual correction. (English) Zbl 1331.65111 Math. Methods Appl. Sci. 38, No. 14, 3033-3042 (2015). MSC: 65L60 65L10 65L11 34A30 65L70 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı}, Math. Methods Appl. Sci. 38, No. 14, 3033--3042 (2015; Zbl 1331.65111) Full Text: DOI OpenURL
Voronin, Anatoly F. Reconstruction of a convolution operator from the right-hand side on the semiaxis. (English) Zbl 1326.45008 J. Inverse Ill-Posed Probl. 23, No. 5, 543-550 (2015). MSC: 45Q05 45D05 45E10 45M10 PDF BibTeX XML Cite \textit{A. F. Voronin}, J. Inverse Ill-Posed Probl. 23, No. 5, 543--550 (2015; Zbl 1326.45008) Full Text: DOI OpenURL
Antonova, T. V. Methods of identifying a parameter in the kernel of the equation of first kind of the convolution type on the class of functions with discontinuities. (Russian, English) Zbl 1340.65313 Sib. Zh. Vychisl. Mat. 18, No. 2, 107-120 (2015); translation in Numer. Analysis Appl. 8, No. 2, 89-100 (2015). MSC: 65R20 45E10 45Q05 65R30 65R32 PDF BibTeX XML Cite \textit{T. V. Antonova}, Sib. Zh. Vychisl. Mat. 18, No. 2, 107--120 (2015; Zbl 1340.65313); translation in Numer. Analysis Appl. 8, No. 2, 89--100 (2015) Full Text: DOI OpenURL
Zhong, Min; Hon, Yiu Chung; Lu, Shuai Multiscale support vector approach for solving ill-posed problems. (English) Zbl 1331.65181 J. Sci. Comput. 64, No. 2, 317-340 (2015). Reviewer: Bernd Hofmann (Chemnitz) MSC: 65R30 47A52 65J20 65J10 65R20 45B05 45A05 46E22 PDF BibTeX XML Cite \textit{M. Zhong} et al., J. Sci. Comput. 64, No. 2, 317--340 (2015; Zbl 1331.65181) Full Text: DOI OpenURL
Korotkov, V. B. On systems of linear functional equations of the third kind in \(L_2\). (English. Russian original) Zbl 1342.45003 Sib. Math. J. 56, No. 3, 435-441 (2015); translation from Sib. Mat. Zh. 56, No. 3, 549-556 (2015). Reviewer: Stefan Balint (Timişoara) MSC: 45F05 45P05 PDF BibTeX XML Cite \textit{V. B. Korotkov}, Sib. Math. J. 56, No. 3, 435--441 (2015; Zbl 1342.45003); translation from Sib. Mat. Zh. 56, No. 3, 549--556 (2015) Full Text: DOI OpenURL
Aisagaliev, S. A.; Kalimoldaev, M. N. Constructive method for solving a boundary value problem for ordinary differential equations. (English. Russian original) Zbl 1322.34032 Differ. Equ. 51, No. 2, 149-162 (2015); translation from Differ. Uravn. 51, No. 2, 147-160 (2015). MSC: 34B15 34A45 49J15 45D05 PDF BibTeX XML Cite \textit{S. A. Aisagaliev} and \textit{M. N. Kalimoldaev}, Differ. Equ. 51, No. 2, 149--162 (2015; Zbl 1322.34032); translation from Differ. Uravn. 51, No. 2, 147--160 (2015) Full Text: DOI OpenURL
Richter, Mathias Inverse Problems. Basics, theory and applied examples. (Inverse Probleme. Grundlagen, Theorie und Anwendungsbeispiele.) (German) Zbl 1331.65083 Mathematik im Fokus. Heidelberg: Springer Spektrum (ISBN 978-3-662-45810-5/pbk; 978-3-662-45811-2/ebook). ix, 128 p. (2015). Reviewer: Robert Plato (Siegen) MSC: 65J22 65-01 65L08 65L09 65Z05 00A69 00A06 65R32 65R30 65R10 44A12 45B05 45D05 65T50 65J20 47A52 47J06 94A12 92C55 65M32 65N21 PDF BibTeX XML Cite \textit{M. Richter}, Inverse Probleme. Grundlagen, Theorie und Anwendungsbeispiele. Heidelberg: Springer Spektrum (2015; Zbl 1331.65083) Full Text: DOI OpenURL
Hansen, Jakob K.; Hogue, Jarom D.; Sander, Grant K.; Renaut, Rosemary A.; Popat, Sudeep C. Non-negatively constrained least squares and parameter choice by the residual periodogram for the inversion of electrochemical impedance spectroscopy data. (English) Zbl 1304.65268 J. Comput. Appl. Math. 278, 52-74 (2015). MSC: 65R20 65R32 45B05 45A05 78A57 78M25 65F08 PDF BibTeX XML Cite \textit{J. K. Hansen} et al., J. Comput. Appl. Math. 278, 52--74 (2015; Zbl 1304.65268) Full Text: DOI arXiv OpenURL
Abramovich, M. V.; Kolosova, Ye. M.; Chebakov, M. I. The contact problem when there are friction forces in the contact area for a three-component cylindrical base. (English. Russian original) Zbl 1432.74159 J. Appl. Math. Mech. 78, No. 2, 181-186 (2014); translation from Prikl. Mat. Mekh. 78, No. 2, 262-269 (2013). MSC: 74M10 74M15 65R20 PDF BibTeX XML Cite \textit{M. V. Abramovich} et al., J. Appl. Math. Mech. 78, No. 2, 181--186 (2014; Zbl 1432.74159); translation from Prikl. Mat. Mekh. 78, No. 2, 262--269 (2013) Full Text: DOI OpenURL
Semenov, Èduard Ivanovich On the first integrals of the generalized Abel equation of the second kind of special form. (Russian. English summary) Zbl 1335.34006 Izv. Irkutsk. Gos. Univ., Ser. Mat. 7, 124-132 (2014). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A05 34A34 34C20 PDF BibTeX XML Cite \textit{È. I. Semenov}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 7, 124--132 (2014; Zbl 1335.34006) OpenURL
Zhao, Jing; Vollebregt, Edwin A. H.; Oosterlee, Cornelis W. Multigrid with FFT smoother for a simplified 2D frictional contact problem. (English) Zbl 1340.65330 Numer. Linear Algebra Appl. 21, No. 2, 256-274 (2014). Reviewer: Marco Donatelli (Como) MSC: 65R20 65F10 15B05 74M10 74M15 45B05 65T50 65F08 PDF BibTeX XML Cite \textit{J. Zhao} et al., Numer. Linear Algebra Appl. 21, No. 2, 256--274 (2014; Zbl 1340.65330) Full Text: DOI Link OpenURL
Voronin, A. F. Reconstruction of a convolution operator from the right-hand side on the real half-axis. (Russian, English) Zbl 1340.45004 Sib. Zh. Ind. Mat. 17, No. 2, 32-40 (2014); translation in J. Appl. Ind. Math. 8, No. 3, 428-435 (2014). MSC: 45E10 45A05 45D05 PDF BibTeX XML Cite \textit{A. F. Voronin}, Sib. Zh. Ind. Mat. 17, No. 2, 32--40 (2014; Zbl 1340.45004); translation in J. Appl. Ind. Math. 8, No. 3, 428--435 (2014) Full Text: DOI OpenURL
Min, Tao; Hu, Gang; Yan, Ligang A numerical solution of the weakly singular Fredholm integral equation of first kind. (Chinese. English summary) Zbl 1324.65157 Acta Anal. Funct. Appl. 16, No. 2, 167-171 (2014). MSC: 65R20 45B05 45E10 65R30 PDF BibTeX XML Cite \textit{T. Min} et al., Acta Anal. Funct. Appl. 16, No. 2, 167--171 (2014; Zbl 1324.65157) OpenURL
Pavani, R.; Caliò, F. About an artificial time approach for iterative numerical solution of Fredholm integral equations of the first kind. (English) Zbl 1312.65231 Far East J. Math. Sci. (FJMS) 95, No. 1, 51-68 (2014). MSC: 65R30 65F10 65F22 65P99 PDF BibTeX XML Cite \textit{R. Pavani} and \textit{F. Caliò}, Far East J. Math. Sci. (FJMS) 95, No. 1, 51--68 (2014; Zbl 1312.65231) Full Text: Link OpenURL
Savchenko, A. O. Functions orthogonal to polynomials and their application in axially symmetric problems in physics. (English. Russian original) Zbl 1311.42062 Theor. Math. Phys. 179, No. 2, 574-587 (2014); translation from Teor. Mat. Fiz. 179, No. 2, 225-241 (2014). Reviewer: Peter Massopust (München) MSC: 42C05 45B05 PDF BibTeX XML Cite \textit{A. O. Savchenko}, Theor. Math. Phys. 179, No. 2, 574--587 (2014; Zbl 1311.42062); translation from Teor. Mat. Fiz. 179, No. 2, 225--241 (2014) Full Text: DOI OpenURL