×

The quasi-neutral limit in optimal semiconductor design. (English) Zbl 1372.35029

Summary: We study the quasi-neutral limit in an optimal semiconductor design problem constrained by a nonlinear, nonlocal Poisson equation modeling the drift-diffusion equations in thermal equilibrium. While a broad knowledge of the asymptotic links between the different models in the semiconductor model hierarchy exists, there are so far no results on the corresponding optimization problems available. Using a variational approach we end up with a bilevel optimization problem, which is thoroughly analyzed. Further, we exploit the concept of \(\Gamma\)-convergence to perform the quasi-neutral limit for the minima and minimizers. This justifies the construction of fast optimization algorithms based on the zero space charge approximation of the drift diffusion model. The analytical results are underlined by numerical experiments confirming the feasibility of our approach.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35Q93 PDEs in connection with control and optimization
35B40 Asymptotic behavior of solutions to PDEs
35J50 Variational methods for elliptic systems
35Q40 PDEs in connection with quantum mechanics
49J20 Existence theories for optimal control problems involving partial differential equations
49K20 Optimality conditions for problems involving partial differential equations

Software:

SyFi; FEniCS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H. Alt, {\it Lineare Funktionalanalysis}, 4th ed., Springer, Berlin, 2002. · Zbl 1098.46500
[2] A. Braides, {\it Gamma-Convergence for Beginners}, Oxford Lecture Ser. Math. Appl., Oxford University Press, Oxford, 2002. · Zbl 1198.49001
[3] M. Burger and R. Pinnau, {\it Fast optimal design of semiconductor devices}, SIAM J. Appl. Math., 64 (2003), pp. 108-126. · Zbl 1056.49035
[4] M. Burger and R. Pinnau, {\it A globally convergent Gummel map for optimal dopant profiling}, Math. Models Methods Appl. Sci., 19 (2009), pp. 769-786. · Zbl 1173.35706
[5] M. Burger, R. Pinnau, M. Fouego, and S. Rau, {\it Optimal control of self-consistent classical and quantum particle systems}, in Trends in PDE Constrained Optimization, Springer, Cham, Switzerland, 2014, pp. 455-470. · Zbl 1327.49006
[6] M. Burger, R. Pinnau, and M.-T. Wolfram, {\it On/off-state design of semiconductor doping models}, Commun. Math. Sci., 6 (2008), pp. 1021-1041. · Zbl 1160.49021
[7] S. Busenberg, W. Fang, and K. Ito, {\it Modeling and analysis of laser-beam-induced current images in semiconductors}, SIAM J. Appl. Math., 53 (1993), pp. 187-204. · Zbl 0772.35072
[8] E. Caglioti, P. Lions, C. Marchioro, and M. Pulvirenti, {\it A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description}, Comm. Math. Phys., 143 (1992), pp. 501-525. · Zbl 0745.76001
[9] Y. Cheng, I. Gamba, and K. Ren, {\it Recovering doping profiles in semiconductor devices with the Boltzmann-Poisson model}, J. Comput. Phys., 230 (2011), pp. 3391-3412. · Zbl 1220.82099
[10] S. Cordier and E. Grenier, {\it Quasi-neutral limit of an Euler-Poisson system arising from plasma physics}, Comm. Partial Differential Equations, 25 (2000), pp. 1099-1113. · Zbl 0978.82086
[11] A. Diebold, M. Kump, J. Kopanski, and D. Seiler, {\it Characterization of two-dimensional dopant profiles: Status and review}, J. Vac. Sci. Technol. B, 14 (1996), pp. 196-201.
[12] C. Drago, N. Marheineke, and R. Pinnau, {\it Semiconductor device optimization in the presence of thermal effects}, ZAMM Z. Angew. Math. Mech., 93 (2013), pp. 700-705. · Zbl 1274.74093
[13] C. Drago and R. Pinnau, {\it Optimal dopant profiling based on energy-transport semiconductor models}, Math. Models Methods Appl. Sci., 18 (2008), pp. 195-214. · Zbl 1188.35187
[14] H. Engl, M. Burger, and R. Eisenberg, {\it Mathematical Design of Ion Channel Selectivity via Inverse Problem Technology}, U.S. Patent 8,335,671, 2012.
[15] W. Fang and K. Ito, {\it Identifiability of semiconductor defects from LBIC images}, SIAM J. Appl. Math., 52 (1992), pp. 1611-1626. · Zbl 0766.35075
[16] W. Fang and K. Ito, {\it Reconstruction of semiconductor doping profile from laser-beam-induced current image}, SIAM J. Appl. Math., 54 (1994), pp. 1067-1082. · Zbl 0808.35170
[17] I. Gasser, L. Hsiao, P. Markowich, and S. Wang, {\it Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors}, J. Math. Anal. Appl., 268 (2002), pp. 184-199. · Zbl 1016.82034
[18] H. Gummel, {\it A self-consistent iterative scheme for one-dimensional steady state transistor calculations}, IEEE Trans. Electron. Devices, ED-11 (1964), pp. 455-465.
[19] W. Hackbusch, {\it Integral Equations: Theory and Numerical Treatment}, Internat. Ser. Numer. Math. 120, Birkhäuser, Basel, 2012. · Zbl 0823.65139
[20] M. Hinze and R. Pinnau, {\it Optimal control of the drift diffusion model for semiconductor devices}, in Optimal Control of Complex Structures, K.-H. Hoffmann, I. Lasiecka, G. Leugering, and J. Sprekels, eds., Internat. Ser. Numer. Math. 139, Birkhäuser, Basel, 2002, pp. 95-106. · Zbl 1027.82041
[21] M. Hinze and R. Pinnau, {\it An optimal control approach to semiconductor design}, Math. Models Methods Appl. Sci., 12 (2002), pp. 89-107. · Zbl 1173.49302
[22] M. Hinze and R. Pinnau, {\it An optimal control approach to semiconductor design}, Math. Models Methods Appl. Sc., 12 (2002), pp. 89-107. · Zbl 1173.49302
[23] M. Hinze and R. Pinnau, {\it Second-order approach to optimal semiconductor design}, J. Optim. Theory Appl., 133 (2007), pp. 179-199. · Zbl 1176.82041
[24] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, {\it Optimization with PDE Constraints}, Springer, Dordrecht, The Netherlands, 2009. · Zbl 1167.49001
[25] A. Jüngel, {\it Quasi-hydrodynamic Semiconductor Equations}, Progr. Nonlinear Differential Equations Appl. 41, Birkhäuser, Basel, 2011.
[26] A. Jüngel and Y.-J. Peng, {\it A hierarchy of hydrodynamic models for plasmas. quasi-neutral limits in the drift-diffusion equations}, Asymptot. Anal., 28 (2001), pp. 49-73. · Zbl 1045.76058
[27] N. Khalil, J. Faricelli, D. Bell, and S. Selberherr, {\it The extraction of two-dimensional MOS transistor doping via inverse modeling}, Electron. Device Lett., IEEE, 16 (1995), pp. 17-19.
[28] Y.-B. Kim, {\it Challenges for nanoscale MOSFETS and emerging nanoelectronics}, Trans. Elect. Electron. Mater., 11 (2010), pp. 93-105.
[29] D. Kinderlehrer and G. Stampacchia, {\it An introduction to variational inequalities and their applications}, Classics Appl. Math. 31, SIAM, Philadelphia, 2000. · Zbl 0988.49003
[30] Y. Li and Y.-C. Chen, {\it Geometric programming approach to doping profile design optimization of metal-oxide-semiconductor devices}, Math. Comput. Model., 58 (2013), pp. 344-354. · Zbl 1297.90190
[31] A. Logg, K.-A. Mardal, and G. Wells, {\it Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book}, Lect. Notes Comput. Sci. Eng. 84, Springer, Heidelberg, 2012. · Zbl 1247.65105
[32] N. Marheineke and R. Pinnau, {\it Model hierarchies in space-mapping optimization: Feasibility study for transport processes}, J. Comput. Methods Sci. Eng., 12 (2012), pp. 63-74. · Zbl 1353.76019
[33] P. Markowich, {\it The Stationary Semiconductor Device Equations}, 1st ed., Springer, Wien, 1986.
[34] P. Markowich, C. Ringhofer, and C. Schmeiser, {\it Semiconductor Equations}, 1st ed., Springer, Wien, 1990. · Zbl 0765.35001
[35] P. Markowich, C. Ringhofer, and C. Schmeiser, {\it Semiconductor Equations}, Springer, Vienna, 1990. · Zbl 0765.35001
[36] G. Maso, {\it An introduction to Gamma-convergence}, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, 1993, . · Zbl 0816.49001
[37] M. S. Mock, {\it Analysis of Mathematical Models of Semiconductor Devices}, 1st ed., Boole Press, Dublin, 1983. · Zbl 0532.65081
[38] D. Peschka, N. Rotundo, and M. Thomas, {\it Towards doping optimization of semiconductor lasers}, J. Comput. Theor. Transp., 45 (2016), pp. 410-423, . · Zbl 07503226
[39] R. Pinnau, S. Rau, F. Schneider, and O. Tse, {\it The Semi-Classical Limit of an Optimal Design Problem for the Stationary Quantum Drift-Diffusion Model}, preprint, arXiv:1402.5518, 2014.
[40] R. Pinnau and A. Unterreiter, {\it The stationary current-voltage characteristics of the quantum drift-diffusion model}, SIAM J. Numer. Anal., 37 (1999), pp. 211-245. · Zbl 0981.65076
[41] M. Struwe, {\it Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems}, 3rd ed., Ergeb. Math. Grenzgeb. (3)3, Springer, Berlin, 2000. · Zbl 0939.49001
[42] S. Sze and K. Ng, {\it Physics of Semiconductor Devices}, Wiley-Interscience, Hoboken, NJ, 2007.
[43] F. Troeltzsch, {\it Optimale Steuerung partieller Differentialgleichungen}, Vieweg+Teubner, Wiesbaden, 2009. · Zbl 1320.49001
[44] A. Unterreiter, {\it The thermal equilibrium state of semiconductor devices}, Appl. Math. Lett., 7 (1994), pp. 35-38. · Zbl 0816.49034
[45] A. Unterreiter, {\it The thermal equilibrium solution of a generic bipolar quantum hydrodynamic model}, Comm. Math. Phys., 188 (1997), pp. 69-88. · Zbl 1004.82507
[46] A. Unterreiter and S. Volkwein, {\it Optimal control of the stationary quantum drift-diffusion model}, Commun. Math. Sci., 5 (2007), pp. 85-111. · Zbl 1152.35096
[47] S. Wang, Z. Xin, and P. Markowich, {\it Quasi-neutral limit of the drift diffusion models for semiconductors: The case of general sign-changing doping profile}, SIAM J. Math. Anal., 37 (2006), pp. 1854-1889. · Zbl 1103.76070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.