×

Whole-cell modeling framework in which biochemical dynamics impact aspects of cellular geometry. (English) Zbl 1450.92034

Summary: A mathematical framework for modeling biological cells from a physicochemical perspective is described. Cells modeled within this framework consist of at least two regions, including a cytosolic volume encapsulated by a membrane surface. The cytosol is viewed as a well-stirred chemical reactor capable of changing volume while the membrane is assumed to be an oriented 2-D surface capable of changing surface area. Two physical properties of the cell, namely volume and surface area, are determined by (and determine) the reaction dynamics generated from a set of chemical reactions designed to be occurring in the cell. This framework allows the modeling of complex cellular behaviors, including self-replication. This capability is illustrated by constructing two self-replicating prototypical whole-cell models. One protocell was designed to be of minimal complexity; the other to incorporate a previously reported well-known mechanism of the eukaryotic cell cycle. In both cases, self-replicative behavior was achieved by seeking stable physically possible oscillations in concentrations and surface-to-volume ratio, and by synchronizing the period of such oscillations to the doubling of cytosolic volume and membrane surface area. Rather than being enforced externally or artificially, growth and division occur naturally as a consequence of the assumed chemical mechanism operating within the framework.

MSC:

92C37 Cell biology
92C42 Systems biology, networks
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

Software:

MEG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aris, R., Elementary Chemical Reactor Analysis (1969), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0194.17803
[2] Arkin, A.; Ross, J.; McAdams, H. H., Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda infected Escherichia coli cells, Genetics, 149, 1633-1648 (1998)
[3] Chen, K. C.; Calzone, L.; Csikasz-Nagy, A.; Cross, F. R.; Novak, B.; Tyson, J. J., Integrative analysis of cell cycle control in budding yeast, Mol. Biol. Cell., 15, 3841-3862 (2004)
[4] De Wit, A., Spatial patterns and spatiotemporal dynamics in chemical systems, Adv. Chem. Phys., 109, 435-513 (1999)
[5] Evans, E. A.; Skalak, R., Mechanics and Thermodynamics of Biomembranes (1979), CRC Press: CRC Press Boca Raton, FL
[6] Förster, J.; Famili, I.; Fu, P.; Palsson, B. O.; Nielson, J., Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network, Genome Res., 13, 244-253 (2003)
[7] Hofmeyr, J. H.S.; Westerhoff, H. V., Building the cellular puzzle: control in multi-level reaction networks, J. Theor. Biol., 208, 261-285 (2000)
[8] Ideker, T.; Galitski, T.; Hood, L., A new approach to decoding life: systems biology, Annu. Rev. Genom. Hum. Genet., 2, 343-372 (2001)
[9] Ingolia, N. T.; Murray, A. W., The ups and downs of modeling the cell cycle, Curr. Biol., 14, R771-R777 (2004)
[10] Ishii, N.; Robert, M.; Nakayama, Y.; Kanai, A.; Tomita, M., Toward large-scale modeling of the microbial cell for computer simulation, J. Biotechnol., 113, 281-294 (2004)
[11] Jansen, R. C., Studying complex biological systems using multifactorial perturbation, Nat. Rev. Genet., 4, 145-151 (2003)
[12] Jordan, D. W.; Smith, P., Nonlinear Ordinary Differential Equations (1999), Oxford University Press: Oxford University Press Oxford · Zbl 0955.34001
[13] Jorgensen, P.; Tyers, M., How cells coordinate growth and division, Curr. Biol., 14, R1014-R1027 (2004)
[14] Jorgensen, P.; Nishikawa, J. L.; Breitkreutz, B. J.; Tyers, M., Systematic identification of pathways that couple cell growth and division in yeast, Science, 297, 395-400 (2002)
[15] Kitano, H., Systems biology: a brief overview, Science, 295, 1662-1664 (2002)
[16] Koch, A. L., Control of the bacterial cell cycle by cytoplasmic growth, Crit. Rev. Microbiol., 28, 61-77 (2002)
[17] Kurin-Csorgei, K.; Epstein, I. R.; Orban, M., Systematic design of chemical oscillators using complexation and precipitation equilibria, Nature, 433, 139-142 (2005)
[18] Lindon, J. C.; Holmes, E.; Nicholson, J. K., Metabolomics and its role in drug development and disease diagnosis, Exp. Rev. Mol. Diagn., 4, 189-199 (2004)
[19] Madsen, M. F.; Dano, S.; Sorensen, P. G., On the mechanisms of glycolytic oscillations in yeast, FEBS J., 272, 2648-2660 (2005)
[20] Mendes, P.; Kell, D. B., MEG (model extender for Gepasi): a program for the modelling of complex, heterogeneous, cellular systems, Bioinformatics, 17, 288-289 (2001)
[21] Mitchison, J. M., Growth during the cell cycle, Int. Rev. Cytol., 226, 165-258 (2003)
[22] Mori, H., From the sequence to cell modeling: comprehensive functional genomics in E. coli, J. Biochem. Mol. Biol., 37, 83-92 (2004)
[23] Morgan, J. J.; Surovtsev, I. V.; Lindahl, P. A., A framework for whole-cell mathematical modeling, J. Theor. Biol., 231, 581-596 (2004) · Zbl 1465.92043
[24] Morohashi, M.; Winn, A. E.; Borisuk, M. T.; Bolouri, H.; Doyle, J. C.; Kitano, H., Robustness as a measure of plausibility in models of biochemical networks, J. Theor. Biol., 216, 19-30 (2002)
[25] Muller, S. C.; Mair, T.; Steinbock, O., Traveling waves in yeast extract and in cultures of Dictyostelium discoideum, Biophys. Chem., 72, 37-47 (1998)
[26] Murray, A. W., Recyling the cell cycle: cyclins revisited, Cell, 116, 221-234 (2004)
[27] Ni, T. C.; Savageau, M. A., Model assessment and refinement using strategies from biochemical systems theory: application to metabolism in human red blood cells, J. Theor. Biol., 179, 329-368 (1996)
[28] Novak, B.; Tyson, J. J., Modelling the controls of the eukaryotic cell cycle, Biochem. Soc. Trans., 31, 1526-1529 (2003)
[29] Polymenis, M.; Schmidt, E. V., Coordination of cell growth with cell division, Curr. Opin. Genet. Dev., 9, 76-80 (1999)
[30] Palsson, B. O., The challenges of in silico biology, Nat. Biotechnol., 18, 1147-1150 (2000)
[31] Qu, Z. L.; MacLellan, W. R.; Weiss, J. N., Dynamics of the cell cycle: checkpoints, sizers, and timers, Biophys. J., 85, 3600-3611 (2003)
[32] Rao, B. M.; Lauffenburger, D. A.; Wittrup, K. D., Integrating cell-level kinetic modeling into the design of engineered protein therapeutics, Nat. Biotech., 23, 191-194 (2005)
[33] Sayyed-Ahmad, A.; Tuncay, K.; Ortoleva, P. J., Toward automated cell model development through information theory, J. Phys. Chem., 107, 10554-10565 (2003)
[34] Slepchenko, B. M.; Schaff, J. C.; Macara, I.; Loew, L. M., Quantitative cell biology with the virtual cell, Trends Cell Biol., 13, 570-576 (2003)
[35] Takahashi, K.; Kaizu, K.; Hu, B.; Tomita, M., A multi-algorithm, multi-timescale method for cell simulation, Bioinformatics, 20, 538-546 (2004)
[36] Tecarro, E. S.; Obeyesekere, M. N.; Auchmuty, G., Mathematical analysis of a 3-variable cell cycle model, Nonlinear Anal. Real World Appl., 4, 87-107 (2003) · Zbl 1026.92017
[37] Tomita, M., Whole-cell simulation: a grand challenge of the 21st century, Trends Biotech., 19, 205-210 (2001)
[38] Tyson, J. J.; Novak, B., Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions, J. Theor. Biol., 210, 249-263 (2001)
[39] Woldringh, C. L.; Huls, P. G.; Vischer, N. O., Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/alpha as determined by image cytometry, J. Bacteriol., 175, 3174-3181 (1993)
[40] You, L. C., Toward computational systems biology, Cell Biochem. Biophys., 40, 167-184 (2004)
[41] Zhdanov, V. P., Model of oscillatory pattern in cells: autocatalysis and transport via the cell membrane, Phys. Chem. Chem. Phys., 2, 5268-5270 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.