×

Comparison of data analysis procedures for real-time nanoparticle sampling data using classical regression and ARIMA models. (English) Zbl 1516.62323

Summary: Real-time monitoring is necessary for nanoparticle exposure assessment to characterize the exposure profile, but the data produced are autocorrelated. This study was conducted to compare three statistical methods used to analyze data, which constitute autocorrelated time series, and to investigate the effect of averaging time on the reduction of the autocorrelation using field data. First-order autoregressive (AR(1)) and autoregressive-integrated moving average (ARIMA) models are alternative methods that remove autocorrelation. The classical regression method was compared with AR(1) and ARIMA. Three data sets were used. Scanning mobility particle sizer data were used. We compared the results of regression, AR(1), and ARIMA with averaging times of 1, 5, and 10 min. AR(1) and ARIMA models had similar capacities to adjust autocorrelation of real-time data. Because of the non-stationary of real-time monitoring data, the ARIMA was more appropriate. When using the AR(1), transformation into stationary data was necessary. There was no difference with a longer averaging time. This study suggests that the ARIMA model could be used to process real-time monitoring data especially for non-stationary data, and averaging time setting is flexible depending on the data interval required to capture the effects of processes for occupational and environmental nano measurements.

MSC:

62-XX Statistics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] C. Asbach, H. Kaminski, H. Fissan, C. Monz, D. Dahmann, S. Mülhopt, H.R. Paur, H.J. Kiesling, F. Herrmann, M. Voetz, and T.A.J. Kuhlbusch, Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements, J. Nanopart. Res. 11 (2009), pp. 1593-1609. · doi:10.1007/s11051-009-9679-x
[2] C. Asbach, T.A.J. Kuhlbusch, H. Kaminski, B. Stahlmecke, S. Plitzko, U. Götz, M. Voetz, H.-J. Kiesling, and D. Dahmann, Standard operation procedures: For assessing exposure to nanomaterials, following a tiered approach, in NanoGEM. ACGIH. (1999). Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio, ISO Standard, 2012, pp. 1006-1015.
[3] G.E. Box and G.M. Jenkins, Time Series Analysis, Control, and Forecasting, Holden Day, San Francisco, CA, 1976. · Zbl 0363.62069
[4] D. Brouwer, M. Berges, M.A. Virji, W. Fransman, D. Bello, L. Hodson, S. Gabriel, and E. Tielemans, Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop, Ann. Occup. Hyg. 56 (2012), pp. 1-9. Available at http://annhyg.oxfordjournals.org/content/56/1/1.abstract. · doi:10.1093/annhyg/mer099
[5] D.H. Brouwer, Control banding approaches for nanomaterials, Ann. Occup. Hyg. 56 (2012), pp. 506-514. · doi:10.1093/annhyg/mes039
[6] D.H. Brouwer, B. van Duuren-Stuurman, M. Berges, D. Bard, E. Jankowska, C. Moehlmann, J. Pelzer, and D. Mark, Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates, J. Nanopart. Res. 15 (2013), pp. 1-14. · doi:10.1007/s11051-013-2090-7
[7] P.S.P. Cowpertwait and V.A. Metcalfe, Introductory Time Series with R, Springer, New York, NY, 2009. · Zbl 1179.62115
[8] J. Fox, and S. Weisberg, An R Companion to Applied Regression, Sage, Los Angeles, CA, 2011.
[9] C.H. Fuller, D. Brugge, P.L. Williams, M.A. Mittleman, J.L. Durant, and J.D. Spengler, Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors, Atmosph. Environ. 57 (2012), pp. 257-265. · doi:10.1016/j.atmosenv.2012.04.004
[10] V. Gomez, M. Levin, A.T. Saber, S. Irusta, M. Dal Maso, R. Hanoi, J. Santamaria, K.A. Jensen, H. Wallin, and I.K. Koponen, Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing, Ann. Occup. Hyg. 58 (2014), pp. 983-994. Available at http://annhyg.oxfordjournals.org/content/early/2014/07/31/annhyg.meu046.abstract. · doi:10.1093/annhyg/meu046
[11] S. Ham, S. Kim, N. Lee, P. Kim, I. Eom, P. Tsai, K. Lee, and C. Yoon, Comparison of nanoparticle exposure levels based on facility type – small-scale laboratories, large-scale manufacturing workplaces, and unintended nanoparticle-emitting workplaces, Aerosol. Air Quality Res. 15 (2015), pp. 1967-1978.
[12] S. Ham, C. Yoon, E. Lee, K. Lee, D. Park, E. Chung, P. Kim, and B. Lee, Task-based exposure assessment of nanoparticles in the workplace, J. Nanopart. Res. 14 (2012), pp. 1-17. · doi:10.1007/s11051-012-1126-8
[13] W.A. Heitbrink, D.E. Evans, B.K. Ku, A.D. Maynard, T.J. Slavin, and T.M. Peters, Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing, J. Occup. Environ. Hyg. 6 (2008), pp. 19-31. Available at http://dx.doi.org/10.1080/15459620802530096.
[14] B. Honnert and M. Grzebyk, Manufactured nano-objects: An occupational survey in five industries in France, Ann. Occup. Hyg. 58 (2013), pp. 121-35. · doi:10.1093/annhyg/met058
[15] T. Hothorn, A. Zeileis, and M.A. Zeileis, R Package ‘lmtest’, (2014). Available at https://cran.r-project.org/web/packages/lmtest/lmtest.pdfhttps://cran.r-project.org/web/packages/lmtest/lmtest.pdf
[16] E.A. Houseman, L. Ryan, J.I. Levy, and J.D. Spengler, Autocorrelation in real-time continuous monitoring of microenvironments, J. Appl. Stat. 29 (2002), pp. 855-872. Available at http://dx.doi.org/10.1080/02664760220136186A.
[17] R.J. Hyndman, Package ‘forecast’, 2013. Available at https://cran.r-project.org/web/packages/forecast/forecast.pdf
[18] R.J. Hyndman and Y. Khandakar, Automatic time series for forecasting: The forecast package for R, J. Stat. Softw. 27 (2008), pp. 1-22. · doi:10.18637/jss.v027.i03
[19] J.-K. Kim, M.-G. Kang, H.-W. Cho, J.-H. Han, Y.-H. Chung, K.-T. Rim, J.-S. Yang, H. Kim, and M.-Y. Lee, Effect of nano-sized carbon black particles on lung and circulatory system by inhalation exposure in rats, Saf. Health Work 2 (2011), pp. 282-289. Available at http://dx.doi.org/10.5491/SHAW.2011.2.3.282. · doi:10.5491/SHAW.2011.2.3.282
[20] R. Klein Entink, W. Fransman, and D. Brouwer, How to statistically analyze nano exposure measurement results: Using an ARIMA time series approach, J. Nanopart. Res. 13 (2011), pp. 6991-7004. Available at http://dx.doi.org/10.1007/s11051-011-0610-x. · doi:10.1007/s11051-011-0610-x
[21] D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, and Y. Shin, Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econometr. 54 (1992), pp. 159-178. Available at http://www.sciencedirect.com/science/article/pii/030440769290104Y. · Zbl 0871.62100 · doi:10.1016/0304-4076(92)90104-Y
[22] J.I. Levy, T. Dumyahn, and J.D. Spengler, Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts, J. Expo. Anal. Environ. Epidemiol. 12 (2002), pp. 104-114. · doi:10.1038/sj.jea.7500203
[23] M. Lin, H.C. LucasJr., and G. Shmueli, Research commentary-too big to fail: Large samples and the p-value problem, Inf. Syst. Res. 24 (2013), pp. 906-917. · doi:10.1287/isre.2013.0480
[24] P. McGarry, L. Morawska, L.D. Knibbs, and H. Morris, Excursion guidance criteria to guide control of peak emission and exposure to airborne engineered particles, J. Occup. Environ. Hyg. 10 (2013), pp. 640-651.
[25] M. Methner, C. Beaucham, C. Crawford, L. Hodson, and C. Geraci, Field application of the nanoparticle emission assessment technique (NEAT): Task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities, J. Occup. Environ. Hyg. 9 (2012), pp. 543-555. Available at http://dx.doi.org/10.1080/15459624.2012.699388.
[26] M. Methner, L. Hodson, and C. Geraci, Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials - Part A, J. Occup. Environ. Hyg. 7 (2009), pp. 127-132. Available at http://dx.doi.org/10.1080/15459620903476355.
[27] N. Neubauer, M. Seipenbusch, and G. Kasper, Functionality based detection of airborne engineered nanoparticles in quasi real time: A new type of detector and a new metric, Ann. Occup. Hyg. 57 (2013), pp. 842-852. Available at http://annhyg.oxfordjournals.org/content/57/7/842.abstract. · doi:10.1093/annhyg/met007
[28] J. Osborne and E. Waters, Four assumptions of multiple regression that researchers should always test, Practical Assess. Res. Eval. 8 (2002), pp. 1-9.
[29] W. Ott, P. Switzer, and N. Willits, Carbon monoxide exposures inside an automobile traveling on an urban arterial highway, Air Waste. 44 (1994), pp. 1012-1018.
[30] T. Ozaki, On the order determination of ARIMA models, J. R. Stat. Soc. Ser. C (Appl. Stat.) 26 (1977), pp. 290-301. Available at http://www.jstor.org/stable/2346970. · doi:10.2307/2346970
[31] J.Y. Park, G. Ramachandran, P.C. Raynor, and G.M. Olson, Determination of particle concentration rankings by spatial mapping of particle surface area, number, and mass concentrations in a restaurant and a die casting plant, J. Occup. Environ. Hyg. 7 (2010), pp. 466-476. Available at http://www.informaworld.com/10.1080/15459624.2010.485263.
[32] T.M. Peters, S. Elzey, R. Johnson, H. Park, V.H. Grassian, T. Maher, and P. O’Shaughnessy, Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety, J. Occup. Environ. Hyg. 6 (2008), pp. 73-81. Available at http://dx.doi.org/10.1080/15459620802590058.
[33] J. Pinheiro, D. Bates, and R. Maintainer, R Package ‘nlme’, (2013). Available at https://cran.r-project.org/web/packages/nlme/nlme.pdf
[34] K.-T. Rim, S.-W. Song, and H.-Y. Kim, Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: A literature review, Saf. Health Work 4 (2013), pp. 177-186. Available at http://dx.doi.org/10.1016/j.shaw.2013.07.006. · doi:10.1016/j.shaw.2013.07.006
[35] C.S.-J. Tsai, D. White, H. Rodriguez, C.E. Munoz, C.-Y. Huang, C.-J. Tsai, C. Barry, and M.J. Ellenbecker, Exposure assessment and engineering control strategies for airborne nanoparticles: An application to emissions from nanocomposite compounding processes, J. Nanopart. Res. 14 (2012), pp. 1-14. · doi:10.1007/s11051-012-0989-z
[36] P. Van Broekhuizen, W. Van Veelen, W.-H. Streekstra, P. Schulte, and L. Reijnders, Exposure limits for nanoparticles: Report of an international workshop on nano reference values, Ann. Occup. Hyg. 56 (2012), pp. 515-524.
[37] B. Van Duuren-Stuurman, S.R. Vink, K.J. Verbist, H.G. Heussen, D.H. Brouwer, D.E. Kroese, M.F. Van Niftrik, E. Tielemans, and W. Fransman, Stoffenmanager nano version 1.0: A web-based tool for risk prioritization of airborne manufactured nano objects, Ann. Occup. Hyg. 56 (2012), pp. 525-541.
[38] L.M. Zwack, C.J. Paciorek, J.D. Spengler, and J.I. Levy, Modeling spatial patterns of traffic-related air pollutants in complex urban terrain, Environ. Health Perspect. 119 (2011), pp. 852-859. · doi:10.1289/ehp.1002519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.