×

Enhanced backscattering of a partially coherent field from an anisotropic random lossy medium. (English) Zbl 1465.35424

Summary: The weak localization or enhanced backscattering phenomenon has received a lot of attention in the literature. The enhanced backscattering cone refers to the situation that the wave backscattered by a random medium exhibits an enhanced intensity in a narrow cone around the incoming wave direction. This phenomenon can be analyzed by a formal path integral approach. Here a mathematical derivation of this result is given based on a system of equations that describes the second-order moments of the reflected wave. This system derives from a multiscale stochastic analysis of the wave field in the situation with high-frequency waves and propagation through a lossy medium with fine scale random microstructure. The theory identifies a duality relation between the spreading of the wave and the enhanced backscattering cone. It shows how the cone, its regularity and width relate to the statistical structure of the random medium. We discuss how this information in particular can be used to estimate the internal structure of the random medium based on observations of the reflected wave.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35P25 Scattering theory for PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
60F05 Central limit and other weak theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. A. Banakh and I. N. Smalikho, Determination of optical turbulence intensity by atmospheric backscattering of laser radiation, Atmospheric and Oceanic Optics, 24 (2011), 457.
[2] Y. N. Barabanenkov, Wave corrections for the transfer equation for backward scattering, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 16, 88-96 (1973)
[3] R. Bi; J. Dong; K. Lee, Coherent backscattering cone shape depends on the beam size, Appl. Optics, 51, 6301-6306 (2012)
[4] I. R. Capoglu; J. D. Rogers; A. Taflove; V. Backman, Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media, Opt. Lett., 34, 2679-2681 (2009)
[5] J. Chrzanowski; J. Kirkiewicz; Yu. A. Kravtsov, Influence of enhanced backscattering phenomenon on laser measurements of dust and aerosols content in a turbulent atmosphere, Phys. Lett. A, 300, 298-302 (2002)
[6] J. H. Churnside; J. J. Wilson, Enhanced backscatter of a reflected beam in atmospheric turbulence, Appl Opt., 32, 2651-2655 (1993)
[7] M. V. de Hoop; J. Garnier; K. Sølna, Enhanced and specular backscattering in random media, Waves in Random and Complex Media, 22, 505-530 (2012) · Zbl 1366.74022 · doi:10.1080/17455030.2012.728299
[8] D. de Wolf, Electromagnetic reflection from an extended turbulent medium: Cumulative forward-scatter single-backscatter approximation, IEEE Trans. Antennas Propagat, 19, 254-262 (1971)
[9] D. de Wolf, Discussion of radiatlve transfer methods applied to electromagnetic reflection from turbulent plasma, IEEE Trans. Antennas Propagat, 20, 805-807 (1972)
[10] J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, New York, 2007. · Zbl 1386.74001
[11] J. Garnier; K. Sølna, Random backscattering in the parabolic scaling, J. Stat. Phys., 131, 445-486 (2008) · Zbl 1146.78006 · doi:10.1007/s10955-008-9488-0
[12] J. Garnier; K. Sølna, Coupled paraxial wave equations in random media in the white-noise regime, Ann. Appl. Probab., 19, 318-346 (2009) · Zbl 1175.60066 · doi:10.1214/08-AAP543
[13] J. Garnier; K. Sølna, Wave backscattering by point scatterers in the random paraxial regime, SIAM J. Multiscale Model. Simul., 3, 1309-1334 (2014) · Zbl 1328.60147 · doi:10.1137/140953757
[14] J. Garnier; K. Sølna, White-noise paraxial approximation for a general random hyperbolic system, SIAM J. Multiscale Model. Simul., 13, 1022-1060 (2015) · Zbl 1329.35365 · doi:10.1137/15M101556X
[15] J. Garnier; K. Sølna, Fourth-moment Analysis for wave propagation in the white-noise paraxial regime, Arch. Rat. Mech. Anal., 220, 37-81 (2016) · Zbl 1339.35289 · doi:10.1007/s00205-015-0926-2
[16] J. Garnier and K. Sølna, Imaging through a scattering medium by speckle intensity correlations over incident angle, Inverse Problems, 34 (2018), 094003, 22pp. · Zbl 1394.78010
[17] J. Garnier; K. Sølna, Non-invasive imaging through random media, SIAM J. Appl. Math., 78, 3296-3315 (2018) · Zbl 1404.60089 · doi:10.1137/18M1171977
[18] A. K. Glaser; Y. Chen; J. T. C. Liu, Fractal propagation method enables realistic optical microscopy simulations in biological tissues, Optica, 3, 861-869 (2016)
[19] K. S. W. Gong; C. J. R. Shappard, Model for light scattering in biological tissue and cells based on random rough nonspherical particles, Appl. Optics, 48, 1153-1157 (2009)
[20] Y. L. Kim; Y. Liu; V. M. Turzhitsky; H. K. Roy; R. K. Wali; V. Backman, Coherent backscattering spectroscopy, Opt. Lett., 29, 1906-1908 (2004)
[21] Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, P. P. Subramanian, P. Pradhan and V. Backman, Low-coherence enhanced backscattering: Review of principles and applications for colon cancer screening, J. Biomed. Opt., 11 (2006), 041125.
[22] Y. L. Kim; Y. Liu; V. M. Turzhitsky; R. K. Wali; H. K. Roy; V. Backman, Depth-resolved low-coherence enhanced backscattering, Opt. Lett., 30, 741-743 (2007)
[23] G. Labeyrie; F. de Tomasi; J.-C. Bernard; C. A. Müller; C. Miniatura; R. Kaiser, Coherent backscattering of light by atoms, Phys. Rev. Lett., 83, 5266-5269 (1999)
[24] J. Liu, Z. Xu, Q. Song, R. L. Konger and Y. L. Kim, Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis, J. Biomed. Opt., 15 (2010), 037011.
[25] N. Mutyal; A. Radosevich; B. Gould; J. D. Rodgers; A. Gomes; V. Turzhitsky; V. Backman, A fiber optic probe design to measure depth- limited optical properties in-vivo with with Low-coherence Enhanced Backscattering (LEBS) Spectroscopy, Opt. Express, 20, 19643-19657 (2012)
[26] J. P. Nolan, Multivariate elliptically contoured stable distributions: Theory and estimation, Computational Statistics, 28, 2067-2089 (2013) · Zbl 1306.65118 · doi:10.1007/s00180-013-0396-7
[27] A. J. Radosevisch, N. M. Nikhil, J. D. Rogers, B. Gould, T. A. Hensing, D. Ray, V. Backman and H. K. Roy, Buccal spectral markers for lung cancer risk stratification, Plos One, 9 (2014), e10157.
[28] J. D. Rogers; I. R. Capoglu; V. Backman, Nonscalar elastic light scattering from continuous random media in the Born approximation, Opt. Lett., 34, 1891-1893 (2009)
[29] J. D. Rogers, A. J. Radosevich, J. Yi and V. Backman, Modeling light scattering in tissue as continuous random media using a versatile refractive index correlation function, IEEE J. Sel. Top. Quant., 20 (2014), 7000514.
[30] Y. M. Sebrebrennikova; L. H. Garcia-Rubio, Modeling and interpretation of extinction spectra of oriented nonspherical composite particles: application to biological cells, Appl. Optics, 49, 4460-4471 (2010)
[31] C. J. R. Sheppard, Fractal model of light scattering in biological tissue and cells, Opt. Lett., 32, 142-144 (2007)
[32] A. Tourin; A. Derode; P. Roux; B. A. van Tiggelen; M. Fink, Time-dependent coherent backscattering of acoustic waves, Phys. Rev. Lett., 79, 3637-3639 (1997)
[33] V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal and V. Backman, Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy, J. Biomed. Opt., 16 (2011), 067007.
[34] V. Turzhitsky; J. D. Rogers; N. N. Mutyal; H. K. Roy; V. Backman, Characterization of light transport in scattering media at subdiffusion length scales with Low-coherence Enhanced Backscattering, IEEE J. Sel. Top. Quant., 16, 619-626 (2010)
[35] M. P. van Albada and A. Lagendijk, Observation of weak localization of light in a random medium, Phys. Rev. Lett., 55 (1985), 2692-2695.
[36] M. C. W. van Rossum; Th. M. Nieuwenhuizen, Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion, Rev. Mod. Phys., 71, 313-371 (1999) · doi:10.1103/RevModPhys.71.313
[37] P. E. Wolf and G. Maret, Weak localization and coherent backscattering of photons in disordered media, Phys. Rev. Lett., 55 (1985), 2696-2699.
[38] P. E. Wolf; G. Maret; E. Akkermans; R. Maynard, Optical coherent backscattering by random media: An experimental study, Journal de Physique, 49, 63-75 (1988)
[39] M. Xu; R. R. Alfano, Fractal mechanisms of light scattering in biological tissue and cells, Opt. Lett., 30, 3051-3053 (2005)
[40] K. M. Yoo; G. C. Tang; R. R. Alfano, Coherent backscattering of light from biological tissues, Appl. Opt., 29, 3237-3239 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.