×

On-line chatter detection using servo motor current signal in turning. (English) Zbl 1238.93127

Summary: Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter, a method of cutting state monitoring based on feed motor current signal is proposed for chatter identification before it has been fully developed. A new data analysis technique, the Empirical Mode Decomposition (EMD), is used to decompose motor current signal into many Intrinsic Mode Functions (IMF). Some IMF’s energy and kurtosis regularly change during the development of the chatter. These IMFs can reflect subtle mutations in current signal. Therefore, the energy index and kurtosis index are used for chatter detection based on those IMFs. Acceleration signal of tool as reference is used to compare with the results from current signal. A Support Vector Machine (SVM) is designed for pattern classification based on the feature vector constituted by energy index and kurtosis index. The intelligent chatter detection system composed of the feature extraction and the SVM has an accuracy rate of above 95% for the identification of cutting state after being trained by experimental data. The results show that it is feasible to monitor and predict the emergence of chatter behavior in machining by using motor current signal.

MSC:

93E35 Stochastic learning and adaptive control
93C95 Application models in control theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tang A J, Liu Z Q. Effect of helix angle and normal rake angle on stability in end milling. Adv Mater Res, 2009, 69–70: 394–398 · doi:10.4028/www.scientific.net/AMR.69-70.394
[2] Tang A J, Liu Z Q. Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate. Intl J Adv Manuf Technol, 2009, 43(1–2): 33–39 · doi:10.1007/s00170-008-1695-y
[3] Budak E. An analytical design method for milling cutters with nonconstant pitch to increase stability, Part 2: Application. Transactions of the ASME. J Manuf Sci Eng, 2003, 125(1): 35–38 · doi:10.1115/1.1536656
[4] Semercigil S E, Chen L A. Preliminary computations for chatter control in end milling. J Sound Vib, 2002, 249(3): 622–633 · doi:10.1006/jsvi.2001.3740
[5] Han D, Zhu L M. Global optimization of tool path for five-axis flank milling with a cylindrical cutter. Sci China Ser E-Tech Sci, 2009, 53: 2449–2459 · Zbl 1354.70019
[6] Bi Q Z, Wang Y H, Zhu L M, et al. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh. Sci China Tech Sci, 2010, 53: 1294–1303 · Zbl 1380.70009 · doi:10.1007/s11431-010-0064-x
[7] Zhu L M, Ding H, Xiong Y L. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (I): Third-order approximation of tool envelope surface. Sci China Tech Sci, 2010, 53: 1904–1912 · Zbl 1380.70015 · doi:10.1007/s11431-010-3185-3
[8] Zhu L M, Ding H, Xiong Y L. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (II): Tool positioning strategy. Sci China Tech Sci, 2010, 53: 2190–2197 · Zbl 1380.70025 · doi:10.1007/s11431-010-3184-4
[9] Ding Y, Zhu L M, Zhang X J, et al. Milling stability analysis using the spectral method. Sci China Tech Sci, 2011, 54: 3130–3136 · Zbl 1239.74034 · doi:10.1007/s11431-011-4611-x
[10] Devillez A, Dudzinski D. Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers. Mech Syst Signal Proc, 2007, 21: 441–456 · doi:10.1016/j.ymssp.2005.11.007
[11] Mao X Y, Liu H Q, Li B. Time-frequency analysis and detecting method research on milling force token signal in spindle current signal. Sci China Ser E-Tech Sci, 2009, 52(10): 2810–2813 · doi:10.1007/s11431-009-0303-1
[12] Gradisek J, Govekar E, Grabec I. Using coarse-grained entropy rate to detect chatter in cutting. J Sound Vib, 1998, 241: 941–952 · doi:10.1006/jsvi.1998.1632
[13] Gradisek J, Baus A, Govekar E, et al. Automatic chatter detection in grinding. Int J Mach Tools & Manuf, 2003, 43(14): 1397–1403 · doi:10.1016/S0890-6955(03)00184-6
[14] Tansel I N, Wang X, Chen P, et al. Transformations in machining. Part 2: Evaluation of machining quality and detection of chatter in turning by using s-transformation. Int J Mach Tools & Manuf, 2006, 46(1): 43–50 · doi:10.1016/j.ijmachtools.2005.04.011
[15] Soliman E, Ismail F. Chatter detection by monitoring spindle drive current. Int J Adv Manuf Technol, 1997, 13(1): 27–34 · doi:10.1007/BF01179227
[16] Kuljanic E, Totis G, Sortino M. Development of an intelligent multisensor chatter detection system in milling. Mech Syst Signal Proc, 2009, 23(5): 1704–1718 · doi:10.1016/j.ymssp.2009.01.003
[17] Tangjitsitcharoen S. In-process monitoring and detection of chip formation and chatter for CNC turning. J Mater Proc Technol, 2009, 209(10): 4682–4688 · doi:10.1016/j.jmatprotec.2008.10.054
[18] Wang L, Liang M. Chatter detection based on probability distribution of wavelet modulus maxima. Rob Comp-Int Manuf, 2009, 25(6): 989–998 · doi:10.1016/j.rcim.2009.04.011
[19] Yao Z H, Mei D Q, Chen Z C. On-line chatter detection and identification based on wavelet and support vector machine. J Mater Proc Technol, 2010, 210(5): 713–719 · doi:10.1016/j.jmatprotec.2009.11.007
[20] Nair U, Krishna B M, Namboothiri V N N, et al. Permutation entropy based real-time chatter detection using audio signal in turning process. Int J Adv Manuf Technol, 2010, 46(1–4): 61–68 · doi:10.1007/s00170-009-2075-y
[21] Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc London, 1998, 454: 903–995 · Zbl 0945.62093 · doi:10.1098/rspa.1998.0193
[22] Nunes J C, Guyot S, Delechelle E. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Mach Vis Appl, 2005, 16(3): 177–188 · Zbl 02224313 · doi:10.1007/s00138-004-0170-5
[23] Bassiuny A M, Li X L. Flute breakage detection during end milling using Hilbert-Huang transform and smoothed nonlinear energy operator. Int J Mach Tools & Manuf, 2007, 47(6): 1011–1020 · doi:10.1016/j.ijmachtools.2006.06.016
[24] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum. Ann Rev Fluid Mech, 1999, 31: 417–457 · doi:10.1146/annurev.fluid.31.1.417
[25] Cao L J, Chua K S, Chong W K, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55(1–2): 321–336 · Zbl 02060380 · doi:10.1016/S0925-2312(03)00433-8
[26] Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995 · Zbl 0833.62008
[27] Vapnik V. The support vector method of function estimation. Proceedings of Neural Networks and Machine Learning, 1998, 239–268 · Zbl 0928.68093
[28] Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Trans on Neural Networks, 2002, 13(2): 415–425 · doi:10.1109/72.991427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.