×

Approximation of the multi-dimensional Stokes system with embedded pressure discontinuities. (English) Zbl 1320.76061

Summary: Surface tension in multi-phase fluid flow engenders pressure discontinuities on phase interfaces. In this work we present a finite element method to solve viscous incompressible flows problems, especially designed to cope with such a situation. Taking as a model the Stokes system we study a finite element solution method based on a classical Galerkin-least-squares formulation with an added pressure jump term multiplied by the mesh step size. Both the velocity and the pressure are represented with continuous piecewise linear functions except for the latter field on the embedded interface. A suitable modification of the pressure space is employed in order to represent interface discontinuities. A priori error analyses point to optimal convergence rates for this approach.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030
[2] Ausas, R., Sousa, F., Buscaglia, G.: An improved finite element space for discontinuous pressures. Comput. Methods Appl. Mech. Eng. 199, 1019-1031 (2010) · Zbl 1227.76025 · doi:10.1016/j.cma.2009.11.011
[3] Braess, D.: Finite Elements Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997) · Zbl 0894.65054
[4] Brenner, S., Carstensen, C. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) : Finite element methods. In: Encyclopedia of Computational Mechanics. Wiley Online Library · Zbl 0072.08903
[5] Buscaglia, G., Agouzal, A.: Interpolation estimate for a finite-element space with embedded discontinuities. IMA J. Numer. Anal. 32, 672-686 (2012) · Zbl 1253.65174 · doi:10.1093/imanum/drq045
[6] Buscaglia, G., Ausas, R.F.: Variational formulations for surface tension, capillarity and wetting. Comput. Methods. Appl. Mech. Eng. 200, 3011-3025 (2011) · Zbl 1230.76047 · doi:10.1016/j.cma.2011.06.002
[7] Buscaglia, G., Ruas, V.: Finite element methods for the Stokes system with interface pressure discontinuities, IMA Journal of Numerical Analysis, first published online December 4, 2013, doi: 10.1093/imanum/drt035 · Zbl 1310.76089
[8] Cartan, E.: Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris (1928) · JFM 54.0755.01
[9] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978) · Zbl 0383.65058
[10] Douglas, J., Wang, J.: An absolutely stabilized finite element method for the stokes problem. Math. Comput. 52-186, 495-508 (1989) · Zbl 0669.76051 · doi:10.1090/S0025-5718-1989-0958871-X
[11] Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, N. Y., 2004 · Zbl 1059.65103
[12] Geymonat, G.: Trace theorems for Sobolev spaces on Lipschitz domains. Necessary conditions. Annal. Math. Blaise Pascal 14, 187-197 (2007) · Zbl 1161.46019 · doi:10.5802/ambp.232
[13] Girault, V., Raviart, P.A.: Finite Element Methods for the Navier-Stokes Equations. Springer (1986) · Zbl 0585.65077
[14] Hughes, T.J.R., Franca, L., Balestra, M.: A new finite element formulation for computational fluid dynamics,: V. The Circumventing the Babuška-Brezzi condition: A stable Petrov -Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. & Eng. 59, 85-99 (1986) · Zbl 0622.76077 · doi:10.1016/0045-7825(86)90025-3
[15] Ladyzhenskaïa, O.A.: The boundary value problems of mathematical physics, Vol. 49. Springer, New York (1985) · Zbl 0588.35003 · doi:10.1007/978-1-4757-4317-3
[16] Lai, M.J.: Multivariate splines and their applications, computational complexity, theory, techniques and applications, doi: 10.1007/978-1-4614-1800-9-126 (2012), 1939-1980 · Zbl 0622.76077
[17] Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math. 9, 267-293 (1956) · Zbl 0072.08903 · doi:10.1002/cpa.3160090206
[18] Lions, J.L.: Problèmes aux limites dans les équations aux dérivées partielles. Presses de l’Université de Montréal (1965) · Zbl 0143.14003
[19] Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, Masson, Paris (1968) · Zbl 0165.10801
[20] Rangarajan, R., Lew, A.J.: Analysis of a method to parameterize planar curves immersed in triangulations. SIAM J. Numer. Anal. 51-3, 1392-1420 (2013) · Zbl 1272.68417 · doi:10.1137/110831805
[21] Sanchez, A.M., Arcangeli, R.: Estimation des erreurs de meilleure approximation polynomiale et d’interpolation de Lagrange dans les espaces de Sobolev d’ordre non entier. Numer. Math. 45, 301-321 (1984) · Zbl 0587.41018 · doi:10.1007/BF01389473
[22] Scott, L.R., Zhang, S.: Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comput. 54-190, 483-493 (1990) · Zbl 0696.65007 · doi:10.1090/S0025-5718-1990-1011446-7
[23] Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs (1973) · Zbl 0356.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.