zbMATH — the first resource for mathematics

Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. (English) Zbl 0742.73019
Summary: Stabilization methods which are based on material and geometric parameters are developed via the Simo-Hughes assumed strain method. The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking are eliminated by projection. The stabilization forces are then independent of the bulk modulus making them ideal for nonlinear incompressible problems such as plasticity in metals. Convergence studies are made for several test problems.

74S05 Finite element methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74C20 Large-strain, rate-dependent theories of plasticity
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74M05 Control, switches and devices (“smart materials”) in solid mechanics
Full Text: DOI
[1] Flanagan, D.P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Internat. J. numer. methods engrg., 17, 679-706, (1981) · Zbl 0478.73049
[2] Hallquist, J.O., (), UCID-19401
[3] Belytschko, T.; Mullen, R., WHAMS: A program for transient analysis of structures and continua, (), 151-212
[4] Belytschko, T.; Ong, J.-S.; Liu, W.K.; Kennedy, J.M., Hourglass control in linear and nonlinear problems, Comput. methods appl. mech. engrg., 43, 251-276, (1984) · Zbl 0522.73063
[5] Belytschko, T.; Bachrach, W.E., Efficient implementation of quadrilaterals with high coarse-mesh accuracy, Comput. methods appl. mech. engrg., 54, 279-301, (1986) · Zbl 0579.73075
[6] Hughes, T.J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Internat. J. numer. methods engrg., 15, 1413-1418, (1980) · Zbl 0437.73053
[7] Nagtegaal, J.C.; Parks, D.M.; Rice, J.R., On numerically accurate finite element solutions in the fully plastic range, Comput. methods appl. mech. engrg., 4, 153-177, (1974) · Zbl 0284.73048
[8] Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghaboussi, J., Incompatible displacement models, (), 43-57
[9] Jacquotte, O.-P.; Oden, J.T., Analysis of hourglass instabilities and control in underintegrated methods in finite element computations, Comput. methods appl. mech. engrg., 44, 339-363, (1984) · Zbl 0543.73104
[10] Liu, W.K.; Belytschko, T., Efficient linear and nonlinear heat conduction with a quadrilateral element, Internat. J. numer. methods engrg., 30, 931-948, (1984) · Zbl 0542.65067
[11] Liu, W.K.; Ong, J.S.; Uras, R.A., Finite element stabilization matrices—A unification approach, Comput. methods appl. mech. engrg., 53, 13-46, (1985) · Zbl 0553.73065
[12] Koh, B.C.; Kikuchi, N., New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity, Comput. methods appl. mech. engrg., 65, 1-46, (1987) · Zbl 0621.73104
[13] Jetteur, Ph.; Cescotto, S., A mixed finite element for the analysis of large inelastic strains, (1990), manuscript submitted for publication · Zbl 0825.73786
[14] Belytschko, T.; Tsay, C.S., A stabilization procedure for the quadrilateral plate element with one-point quadrature, Internat. J. numer. methods engrg., 19, 405-419, (1983) · Zbl 0502.73058
[15] Belytschko, T.; Lin, J.I.; Tsay, C.-S., Explicit algorithms for the nonlinear dynamics of shells, Comput. methods appl. mech. engrg., 42, 225-251, (1984) · Zbl 0512.73073
[16] Vu-Quoc, L.; Mora, J.A., A class of simple and efficient degenerated shell elements3̄analysis of global spurious-mode filtering, Comput. methods appl. mech. engrg., 74, 117-175, (1989) · Zbl 0687.73071
[17] Simo, J.C.; Hughes, T.J.R., On the variational foundations of assumed strain methods, J. appl. mech., 53, 1, 51-54, (1986) · Zbl 0592.73019
[18] Pian, T.H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Internat. J. numer. methods engrg., 20, 1685-1695, (1984) · Zbl 0544.73095
[19] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
[20] Fish, J.; Belytschko, T., Elements with embedded localization zones for large deformation problems, Comput. & structures, 30, 1/2, 247-256, (1988) · Zbl 0667.73033
[21] Belytschko, T.; Wong, B.L.; Plaskacz, E., Fission-fusion adaptivity in finite elements for nonlinear dynamics of shells, Comput. & structures, 33, 4-5, 1307-1323, (1989) · Zbl 0724.73224
[22] Timoshenko, S.P.; Goodier, J.N., Theory of elasticity, (), 41-46 · Zbl 0266.73008
[23] Howland, R.C.J., On the stress in the neighbourhood of a circular hole in a strip under tension, (), 49-86 · JFM 56.1236.04
[24] Liu, W.K.; Chang, H.; Chen, J.-S.; Belytschko, T., Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua, Comput. methods appl. mech. engrg., 68, 259-310, (1988) · Zbl 0626.73076
[25] Belytschko, T.; Wong, B.L.; Stolarski, H., Assumed strain stabilization procedure for the 9-node Lagrange shell element, Internat. J. numer. methods engrg., 28, 2, 385-414, (1989) · Zbl 0674.73054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.