×

Inverse problem for the Yang-Mills equations. (English) Zbl 1468.78005

The authors solve an inverse problem associated with Yang-Mills theories in the Minkowski space. Given data on a small observation set inside the domain, the goal is to recover the gauge field on a causal domain where waves can propagate and return. A crucial step, in this study, is concerned with the analysis of the principal symbols of waves generated by certain nonlinear interactions.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory
81T13 Yang-Mills and other gauge theories in quantum field theory
83A05 Special relativity
17B81 Applications of Lie (super)algebras to physics, etc.

Software:

GitHub
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alinhac, S., Non-unicité du problème de Cauchy, Ann. Math. (2), 117, 1, 77-108 (1983) · Zbl 0516.35018 · doi:10.2307/2006972
[2] Assylbekov, Y.M., Zhou, T.: Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media. Preprint, arXiv:1709.07767
[3] Bony, J.-M.: Second microlocalization and propagation of singularities for semilinear hyperbolic equations. In: Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), pp. 11-49. Academic Press, Boston (1986) · Zbl 0669.35073
[4] Bröcker, T.; tom Dieck, T., Representations of Compact Lie Groups, Graduate Texts in Mathematics (1985), New York: Springer, New York · Zbl 0581.22009 · doi:10.1007/978-3-662-12918-0
[5] Cârstea, CI; Nakamura, G.; Vashisth, M., Reconstruction for the coefficients of a quasilinear elliptic partial differential equation, Appl. Math. Lett., 98, 121-127 (2019) · Zbl 1423.35437 · doi:10.1016/j.aml.2019.06.009
[6] Cekić, M., Calderón problem for Yang-Mills connections, J. Spectr. Theory, 10, 2, 463-513 (2020) · Zbl 1445.35326 · doi:10.4171/JST/302
[7] Chen, X., Lassas, M., Oksanen, L., Paternain, G.P.: Detection of Hermitian connections in wave equations with cubic non-linearity. J. Eur. Math. Soc. (JEMS) (to appear) · Zbl 1487.35440
[8] Chen, X., Lassas, M., Oksanen, L., Paternain, G.P.: Mathematica code verifying (55). https://github.com/l-oksanen/CLOP2020 (2020). GitHub repository
[9] Choquet-Bruhat, Y., Yang-Mills-Higgs fields in three space time dimensions, Mém. Soc. Math. France (N.S.), 46, 2, 73-97 (1991) · Zbl 0773.53036 · doi:10.24033/msmf.355
[10] de Hoop, M.; Uhlmann, G.; Wang, Y., Nonlinear interaction of waves in elastodynamics and an inverse problem, Math. Ann., 376, 1-2, 765-795 (2020) · Zbl 1441.35262 · doi:10.1007/s00208-018-01796-y
[11] Duistermaat, JJ; Hörmander, L., Fourier integral operators. II, Acta Math., 128, 3-4, 183-269 (1972) · Zbl 0232.47055 · doi:10.1007/BF02392165
[12] Feizmohammadi, A., Ilmavirta, J., Kian, Y., Oksanen, L.: Recovery of time dependent coefficients from boundary data for hyperbolic equations. J. Spectr. Theory. Preprint arXiv:1901.04211
[13] Feizmohammadi, A., Oksanen, L.: An inverse problem for a semi-linear elliptic equation in Riemannian geometries. J. Differ. Equ. Preprint, arXiv:1904.00608 · Zbl 1448.58016
[14] Feizmohammadi, A., Oksanen, L.: Recovery of zeroth order coefficients in non-linear wave equations. J. Inst. Math. Jussieu. Preprint arXiv:1903.12636 · Zbl 1448.58016
[15] Greenleaf, A.; Uhlmann, G., Recovering singularities of a potential from singularities of scattering data, Commun. Math. Phys., 157, 3, 549-572 (1993) · Zbl 0790.35112 · doi:10.1007/BF02096882
[16] Hall, B., Lie Groups, Lie Algebras, and Representations, Graduate Texts in Mathematics, vol. 222 (2015), Berlin: Springer, Berlin · Zbl 1316.22001 · doi:10.1007/978-3-319-13467-3
[17] Hintz, P.; Uhlmann, G., Reconstruction of Lorentzian manifolds from boundary light observation sets, Int. Math. Res. Not. IMRN, 22, 6949-6987 (2019) · Zbl 1430.53022 · doi:10.1093/imrn/rnx320
[18] Hörmander, L., Fourier integral operators. I, Acta Math., 127, 1-2, 79-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[19] Hörmander, L., The Analysis of Linear Partial Differential Operators. III, Grundlehren der Mathematischen Wissenschaften (1985), Berlin: Springer, Berlin · Zbl 0612.35001
[20] Hörmander, L., The Analysis of Linear Partial Differential Operators. I. Springer Study Edition (1990), Berlin: Springer, Berlin · Zbl 0687.35002
[21] Isakov, V., On uniqueness in inverse problems for semilinear parabolic equations, Arch. Ration. Mech. Anal., 124, 1, 1-12 (1993) · Zbl 0804.35150 · doi:10.1007/BF00392201
[22] Isakov, V.; Nachman, AI, Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Am. Math. Soc., 347, 9, 3375-3390 (1995) · Zbl 0849.35148 · doi:10.1090/S0002-9947-1995-1311909-1
[23] Isakov, V.; Sylvester, J., Global uniqueness for a semilinear elliptic inverse problem, Commun. Pure Appl. Math., 47, 10, 1403-1410 (1994) · Zbl 0817.35126 · doi:10.1002/cpa.3160471005
[24] Joshi, MS; Sá Barreto, A., The generation of semilinear singularities by a swallowtail caustic, Am. J. Math., 120, 3, 529-550 (1998) · Zbl 0913.35007 · doi:10.1353/ajm.1998.0023
[25] Kang, K.; Nakamura, G., Identification of nonlinearity in a conductivity equation via the Dirichlet-to-Neumann map, Inverse Probl., 18, 4, 1079-1088 (2002) · Zbl 1043.35146 · doi:10.1088/0266-5611/18/4/309
[26] Kato, T., Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations. Lecture Notes in Mathematics, 25-70 (1975), Berlin: Springer, Berlin · Zbl 0315.35077
[27] Kenig, CE; Sjöstrand, J.; Uhlmann, G., The Calderón problem with partial data, Ann. Math. (2), 165, 2, 567-591 (2007) · Zbl 1127.35079 · doi:10.4007/annals.2007.165.567
[28] Kurylev, Y., Lassas, M., Oksanen, L., Uhlmann, G.: Inverse problem for Einstein-scalar field equations. Preprint arXiv:1406.4776
[29] Kurylev, Y.; Lassas, M.; Uhlmann, G., Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math., 212, 3, 781-857 (2018) · Zbl 1396.35074 · doi:10.1007/s00222-017-0780-y
[30] Lassas, M.: Inverse problems for linear and non-linear hyperbolic equations. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, vol. IV. Invited lectures, pp. 3751-3771. World Sci. Publ., Hackensack (2018) · Zbl 1447.35006
[31] Lassas, M., Liimatainen, T., Lin, Y.-H., Salo, M.: Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations. Preprint, arXiv:1905.02764 · Zbl 1460.35395
[32] Lassas, M., Uhlmann, G., Wang, Y.: Determination of vacuum space-times from the Einstein-Maxwell equations. Preprint arXiv:1703.10704
[33] Lassas, M.; Uhlmann, G.; Wang, Y., Inverse problems for semilinear wave equations on Lorentzian manifolds, Commun. Math. Phys., 360, 2, 555-609 (2018) · Zbl 1409.58019 · doi:10.1007/s00220-018-3135-7
[34] Melrose, R.; Ritter, N., Interaction of nonlinear progressing waves for semilinear wave equations, Ann. Math. (2), 121, 1, 187-213 (1985) · Zbl 0575.35063 · doi:10.2307/1971196
[35] Melrose, RB; Ritter, N., Interaction of progressing waves for semilinear wave equations. II, Ark. Mat., 25, 1, 91-114 (1987) · Zbl 0653.35058 · doi:10.1007/BF02384437
[36] Melrose, RB; Uhlmann, GA, Lagrangian intersection and the Cauchy problem, Commun. Pure Appl. Math., 32, 4, 483-519 (1979) · Zbl 0396.58006 · doi:10.1002/cpa.3160320403
[37] Nachman, AI, Reconstructions from boundary measurements, Ann. Math. (2), 128, 3, 531-576 (1988) · Zbl 0675.35084 · doi:10.2307/1971435
[38] Oksanen, L., Salo, M., Stefanov, P., Uhlmann, G.: Inverse problems for real principal type operators. Preprint arXiv:2001.07599
[39] Rauch, J.; Reed, MC, Singularities produced by the nonlinear interaction of three progressing waves; examples, Commun. Partial Differ. Equ., 7, 9, 1117-1133 (1982) · Zbl 0502.35060 · doi:10.1080/03605308208820246
[40] Sá Barreto, A., Wang, Y.: Singularities generated by the triple interaction of semilinear conormal waves. Preprint arXiv:1809.09253
[41] Salazar, R., Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Probl., 29, 9, 095015,17 (2013) · Zbl 1292.35336 · doi:10.1088/0266-5611/29/9/095015
[42] Salo, M.; Zhong, X., An inverse problem for the \(p\)-Laplacian: boundary determination, SIAM J. Math. Anal., 44, 4, 2474-2495 (2012) · Zbl 1251.35191 · doi:10.1137/110838224
[43] Stefanov, PD, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201, 4, 541-559 (1989) · Zbl 0653.35049 · doi:10.1007/BF01215158
[44] Sun, Z.; Uhlmann, G., Inverse problems in quasilinear anisotropic media, Am. J. Math., 119, 4, 771-797 (1997) · Zbl 0886.35176 · doi:10.1353/ajm.1997.0027
[45] Sylvester, J.; Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), 125, 1, 153-169 (1987) · Zbl 0625.35078 · doi:10.2307/1971291
[46] Uhlmann, G., Wang, Y.: Determination of space-time structures from gravitational perturbations. Commun. Pure Appl. Math. Preprint arXiv:1806.06461 · Zbl 1450.83002
[47] Wang, Y.; Zhou, T., Inverse problems for quadratic derivative nonlinear wave equations, Commun. Partial Differ. Equ., 44, 11, 1140-1158 (2019) · Zbl 1439.35572 · doi:10.1080/03605302.2019.1612908
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.