×

Divergence of an orbital-angular-momentum-carrying beam upon propagation. (English) Zbl 1452.78006

Summary: There is recent interest in the use of light beams carrying orbital angular momentum (OAM) for creating multiple channels within free-space optical communication systems. One crucial issue is that, for a given beam size at the transmitter, the beam divergence angle increases with increasing OAM. Therefore the larger the value of OAM, the larger the aperture required at the receiving optical system if the efficiency of detection is to be maintained. Confusion exists as to whether this divergence scales linearly with, or with the square root of, the beam’s OAM. We clarify how both these scaling laws are valid, depending upon whether it is the radius of the waist of the beam’s Gaussian term or the radius of rms intensity of the beam that is kept constant while varying the OAM.

MSC:

78A10 Physical optics
78A40 Waves and radiation in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Yao A M and Padgett M J 2011 Orbital angular momentum: origins, behavior and applications Adv. Opt. Photonics3 161 · doi:10.1364/AOP.3.000161
[2] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes Phys. Rev. A 45 8185-9 · doi:10.1103/PhysRevA.45.8185
[3] Padgett M J and Allen L 1995 The poynting vector in Laguerre-Gaussian laser modes Opt. Commun.121 36-40 · doi:10.1016/0030-4018(95)00455-H
[4] Leach J, Keen S, Padgett M J, Saunter C and Love G D 2006 Direct measurement of the skew angle of the poynting vector in a helically phased beam Opt. Express14 11919-24 · doi:10.1364/OE.14.011919
[5] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S and Franke-Arnold S 2004 Free-space information transfer using light beams carrying orbital angular momentum Opt. Express12 5448-56 · doi:10.1364/OPEX.12.005448
[6] Wang J et al 2012 Terabit free-space data transmission employing orbital angular momentum multiplexing Nat. Photonics6 488-96 · doi:10.1038/nphoton.2012.138
[7] Krenn M, Fickler R, Fink M, Handsteiner J, Scheidl T, Ursin R and Zeilinger A 2014 Twisted light communication through turbulent air across vienna New J. Phys.16 113028 · doi:10.1088/1367-2630/16/11/113028
[8] Stelzer E H K and Grill S 2000 The uncertainty principle applied to estimate focal spot dimensions Opt. Commun.173 51-56 · doi:10.1016/S0030-4018(99)00644-6
[9] Padgett M 2008 On the focussing of light, as limited by the uncertainty principle J. Mod. Opt.55 3083-9 · doi:10.1080/09500340802272365
[10] Phillips R L and Andrews L C 1983 Spot size and divergence for Laguerre-Gaussian beams of any order Appl. Opt.22 643-4 · doi:10.1364/AO.22.000643
[11] Beijersbergen M W, Allen L, van der Veen H E L O and Woerdman J P 1993 Astigmatic laser mode converters and transfer of orbital angular momentum Opt. Commun.96 123-32 · doi:10.1016/0030-4018(93)90535-D
[12] Bazhenov V Y, Vasnetsov M V and Soskin M S 1990 Laser-beams with screw dislocations in their wave-fronts J. Exp. Theor. Phys. Lett.52 429-31
[13] Dennis M R, O’Holleran K and Padgett M J 2009 Singular optics: optical vortices and polarization singularities Prog. Opt.53 293-363 · doi:10.1016/s0079-6638(08)00205-9
[14] Curtis J E and Grier D G 2003 Structure of optical vortices Phys. Rev. Lett.90 133901 · doi:10.1103/PhysRevLett.90.133901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.