×

The use of optimization techniques in the analysis of cracked members by the finite element displacement and stress methods. (English) Zbl 0411.73075


MSC:

74R05 Brittle damage
74S05 Finite element methods applied to problems in solid mechanics
65K10 Numerical optimization and variational techniques

Software:

NAG; nag
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gallagher, R., Survey and evaluation of the finite element method in linear fracture mechanics analysis, (Proc. 1st International Conference on Structural Mechanics in Reacter Technology. Proc. 1st International Conference on Structural Mechanics in Reacter Technology, Berlin (1971))
[2] Rice, J. R., Elastic-plastic fracture mechanics, (Erdogan, F., ASME AMD, 19 (1976)), 23-53
[3] Ranaweera, M. P.; Leckie, F. A., Solution of nonlinear elastic fracture problems by direct optimization, (Proc. 1st International Conference on Numerical Methods in Fracture Mechanics. Proc. 1st International Conference on Numerical Methods in Fracture Mechanics, Swansea (1978)), 450-463 · Zbl 0425.73088
[4] Rice, J. R., A path-independent integral and the approximate analysis of stress concentration by notches and cracks, J. Appl. Mech., 35, 379-386 (1968)
[5] Rice, J. R., Mathematical analysis in the mechanics of fracture, (Liebowitz, H., Fracture: an advanced treatise, 2 (1968), Academic Press), 191-311 · Zbl 0214.51802
[6] Bui, H. D., Dual path-independent integrals in the boundary value problems of cracks, Eng. Fract. Mech., 6, 287-296 (1974)
[7] Watwood, V. B., The finite element method for prediction of crack behaviour, Nuc. Eng. Des., 11, 323-332 (1969)
[8] Rice, J. R.; Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, 16, 13-31 (1968) · Zbl 0166.20703
[9] Hutchinson, J. W., Singular behaviour at the end of a tensile crack in a hardening material, J. Mech. Phys. Solids, 16, 13-31 (1968) · Zbl 0166.20704
[10] Hutchinson, J. W., Plastic stress and strain fields at a crack tip, J. Mech. Phys. Solids, 16, 337-342 (1968)
[11] Tong, P.; Pian, T. H.H., On the convergence of the finite element method for problems with singularity, Int. J. Solids Structs., 6, 313-321 (1973) · Zbl 0261.73049
[12] Zienkiewicz, O. C., The finite element method (1977), McGraw-Hill · Zbl 0435.73072
[13] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solutions in the fully plastic range, Comp. Meths. Appl. Mech. Eng., 4, 153-177 (1974) · Zbl 0284.73048
[14] Argyris, J. H.; Dunne, P. C.; Müller, M., Isochoric constant strain finite elements, Comp. Meth. Appl. Mech. Eng., 13, 245-278 (1978) · Zbl 0376.73071
[15] Argyris, J. H.; Dunne, P. C.; Johnsen, T. L.; Müller, M., Linear systems with a large number of sparse constraints with application to incompressible materials, Comp. Meths. Appl. Mech. Eng., 10, 105-132 (1977) · Zbl 0364.73069
[16] Ranaweera, M. P.; Leckie, F. A., Bound methods in limit analysis, (Tottenham, H.; Brebbia, C., Finite element techniques in structural mechanics (1970), Southampton Univ. Press), 259-282 · Zbl 0411.73075
[17] Yamamoto, Y.; Tokuda, N., Determination of stress intensity factors in cracked plates by the finite element method, Int. J. Numer. Meths. Eng., 6, 427-439 (1973) · Zbl 0253.73055
[18] Morley, L. S.D., Finite element solutions of boundary value problems with non-removable singularities, Phil. Trans. Roy. Soc. London, A 275, 463-488 (1973) · Zbl 0287.65057
[19] Fletcher, R., Mathematical programming methods-a critical review, (Gallagher, R. H.; Zienkiewicz, O. C., Optimum structural design (1973), Wiley) · Zbl 0194.20404
[20] Brodlie, K. W., Unconstrained minimization, (Jacobs, D. A.H., State of the art in numerical analysis (1977), Academic Press) · Zbl 0322.65033
[21] Rosenbrock, H. H., An automatic method for finding the greatest or least value of a function, Comp. J., 3, 175-184 (1960)
[22] Powell, M. J.D., An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comp. J., 7, 155-162 (1964) · Zbl 0132.11702
[23] Zangwill, W. I., Minimizing a function without calculating derivatives, Comp. J., 10, 293-296 (1967) · Zbl 0189.48004
[24] Gill, P. E.; Murray, W., Quasi-Newton methods for unconstrained optimization, J. Inst. Math. Applics., 9, 91-108 (1972) · Zbl 0264.49026
[25] Subroutine EO4CDF. Subroutine EO4CDF, NAG Fortran Library Manual-Mark 5, Numerical algorithms group (1977), Oxford
[26] Goldman, N. L.; Hutchinson, J. W., Fully plastic crack problems: the centre-cracked strip under plane strain, Int. J. Solids Structs., 11, 575-591 (1975) · Zbl 0298.73110
[27] Shih, C. F.; Hutchinson, J. W., Fully plastic solutions and large scale yielding estimates for plane stress crack problems, J. Eng. Mats. Tech., 98, 289-295 (1976)
[28] Parks, D. M., Virtual crack extension: a general finite element technique for \(J- integral\) evaluation, (Proceedings 1st International Conference on Numerical Methods in Fracture Mechanics. Proceedings 1st International Conference on Numerical Methods in Fracture Mechanics, Swansea (1978)), 464-478 · Zbl 0428.73090
[29] Tada, H.; Paris, P.; Irwin, G., (The stress analysis of cracks handbook (1973), Del Res. Corp: Del Res. Corp Hellertown)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.