×

A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. (English) Zbl 1301.74042

Summary: Lattice models are powerful tools to investigate damage processes in quasi-brittle material by a microscale perspective. Starting from prior work on a novel rational damage theory for a 2D heterogenous lattice, this paper explores the connection between the series of critical strains at which the microcracks form (i.e. lattice links fail) and the second gradient of the microscale displacement field. Taking a simple tensile test as a representative case study for this endeavour, the analysis of accurate numerical results provides evidence that the second gradient of the microscale displacement field (notably the quantity \(| \nabla (\partial u^{x}/\partial x)|\) for the specific example elaborated here) conveys indeed crucial information about the microcracks formation process and can be conveniently used to introduce simplifications of the rational theory that are of relevance by practical purposes as full field strain measurements become routinely possible with digital imaging correlation techniques. Note worthy, the results support the new view that the damage evolution is a three regimes process (I dilute damage, II homogeneous interaction, III localization.) The featured connection with the second gradient of the microscale displacement field is applicable in regions II–III, where microcracks interactions grow stronger and the lattice transitions to the softening regime. The potential impact of these findings towards the formulation of new and physically based CDM models, which are consistent with the reference discrete microscale theory, cannot be overlooked and is pointed out.

MSC:

74R05 Brittle damage
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Krajcinovic
[2] J. Lemaitre
[3] Kachanov, Izv. Akad. Nauk. 8 pp 26– (1958)
[4] F. D’Annibale A. Luongo
[5] Budiansky, Int. J. Solids Struct. 12 pp 81– (1976) · Zbl 0318.73065 · doi:10.1016/0020-7683(76)90044-5
[6] S. Nemat-Nasser M. Hori
[7] Khisaeva, J. Elast. 85 pp 153– (2006) · Zbl 1104.74008 · doi:10.1007/s10659-006-9076-y
[8] Diebels, J. Mater. Sci. 40 pp 5919– (2005) · doi:10.1007/s10853-005-5043-4
[9] Ebinger, Proc. Appl. Math. Mech. 5 pp 331– (2005) · Zbl 1391.74220 · doi:10.1002/pamm.200510142
[10] Chambolle, J. Nonlinear Sci. 20 pp 395– (2010) · Zbl 1211.74183 · doi:10.1007/s00332-010-9061-2
[11] Chambolle, J. Mech. Phys. Solids 56 pp 1614– (2009) · Zbl 1371.74016 · doi:10.1016/j.jmps.2009.05.009
[12] Contrafatto, Int. J. Plast. 22 pp 2272– (2006) · Zbl 1229.74122 · doi:10.1016/j.ijplas.2006.03.011
[13] Contrafatto, Int. J. Numer. Methods Eng. 63 pp 1089– (2005) · Zbl 1155.74406 · doi:10.1002/nme.1235
[14] Contrafatto, Int. J. Solids Struct. 39 pp 6241– (2002) · Zbl 1032.74509 · doi:10.1016/S0020-7683(02)00470-5
[15] Del Piero, Contin. Mech. Thermodyn. 21 pp 141– (2009) · Zbl 1170.74378 · doi:10.1007/s00161-009-0101-9
[16] Altenbach, Arch. Appl. Mech. 80(3) pp 217– (2010) · Zbl 1271.74251 · doi:10.1007/s00419-009-0314-1
[17] S. Diebels A. Geringer
[18] S. Diebels D. Scharding
[19] Eremeyev, Dokl. Phys. 50(4) pp 204– (2005) · doi:10.1134/1.1922562
[20] Forest, Int. J. Solids Struct. 38 pp 4585– (2001) · Zbl 1033.74038 · doi:10.1016/S0020-7683(00)00295-X
[21] Forest, J. Eng. Mech. 135 pp 117– (2009) · doi:10.1061/(ASCE)0733-9399(2009)135:3(117)
[22] Alibert, Math. Mech. Solids 8 pp 51– (2003) · Zbl 1039.74028 · doi:10.1177/1081286503008001658
[23] Seppecher, J. Phys., Conf. Ser. 319(1) pp 012018– (2011) · doi:10.1088/1742-6596/319/1/012018
[24] Sunyk, Int. J. Solids Struct. 40(24) pp 6877– (2003) · Zbl 1137.74311 · doi:10.1016/j.ijsolstr.2003.07.001
[25] Yang, CMES 1549(1) pp 1– (2010) · doi:10.1007/s11431-009-0425-5
[26] Curtin, J. Mater. Res. 5(3) pp 535– (1990) · doi:10.1557/JMR.1990.0535
[27] Jagota, Model. Simul. Mater. Sci. Eng. 3 pp 485– (1995) · doi:10.1088/0965-0393/3/4/005
[28] Van Mier, Mech. Mater. 34 pp 705– (2002) · doi:10.1016/S0167-6636(02)00170-9
[29] Krajcinovic, Mech. Mater. 37 pp 299– (2005) · doi:10.1016/j.mechmat.2003.08.015
[30] Mastilovic, Int. J. Plast. 15 pp 427– (1999) · doi:10.1016/S0749-6419(98)00068-0
[31] Mastilovic, J. Appl. Mech. 66 pp 585– (1999) · doi:10.1115/1.2791459
[32] Mastilovic, J. Mech. Phys. Solids 47 pp 577– (1999) · Zbl 0947.74056 · doi:10.1016/S0022-5096(98)00040-4
[33] Mastilovic, Mech. Mater. 40(4-5) pp 407– (2008) · doi:10.1016/j.mechmat.2007.10.003
[34] Mastilovic, Int. J. Damage Mech. 17 pp 357– (2008) · doi:10.1177/1056789508092397
[35] Krajcinovic, J. Appl. Mech. 72 pp 76– (2005) · Zbl 1111.74491 · doi:10.1115/1.1825434
[36] Rinaldi, J. Theor. Appl. Mech. 44(3) pp 585– (2006)
[37] Rinaldi, Int. J. Damage. Mech. 16(1) pp 57– (2007) · doi:10.1177/1056789507060779
[38] Rinaldi, Mech. Mater. 40 pp 17– (2008) · doi:10.1016/j.mechmat.2007.02.005
[39] I. Iturrioz V.M.R. d’Avila E. Bittencourt A. Morquio
[40] Miguel, Comput. Model. Eng. Sci. 56 pp 1– (2010)
[41] E. Porcu P. Gregori J. Mateu M. Ostoja-Starzewski
[42] Ostoja-Starzewski, Probabilistic Eng. Mech. 21(3) pp 267– (2006) · doi:10.1016/j.probengmech.2005.10.007
[43] Tadmor, Int. J. Solids Struct. 37 pp 379– (2000) · Zbl 1075.74024 · doi:10.1016/S0020-7683(99)00095-5
[44] Diebels, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 458(2008) pp 2869– (2002) · Zbl 1116.74322 · doi:10.1098/rspa.2002.0991
[45] Ebinger, Comput. Mater. Sci. 32(3) pp 337– (2005) · doi:10.1016/j.commatsci.2004.09.034
[46] Carcaterra, J. Sound Vib. 229(3) pp 579– (2000) · doi:10.1006/jsvi.1999.2517
[47] Andreaus, Commun. Nonlinear Sci. Numer. Simul. 15(9) pp 2603– (2010) · Zbl 1222.70020 · doi:10.1016/j.cnsns.2009.10.015
[48] Madeo, C.R. Mecanique 340(8) pp 575– (2012) · doi:10.1016/j.crme.2012.05.003
[49] Madeo, C.R. Mecanique 339(10) pp 625– (2011) · doi:10.1016/j.crme.2011.07.004
[50] Alessandroni, Eur. J. Mech. A, Solids 23(4) pp 689– (2004) · Zbl 1065.74562 · doi:10.1016/j.euromechsol.2004.03.003
[51] Rosi, Eur. J. Mech. A, Solids 29(5) pp 859– (2010) · doi:10.1016/j.euromechsol.2010.02.014
[52] Rinaldi, Int. J. Plast. 23 pp 1796– (2007) · Zbl 1155.74402 · doi:10.1016/j.ijplas.2007.03.005
[53] Rinaldi, Int. J. Damage Mech. 18 pp 233– (2009) · doi:10.1177/1056789508097544
[54] Delaplace, J. Mech. Phys. Solids 44(1) pp 99– (1996) · Zbl 1054.74507 · doi:10.1016/0022-5096(95)00062-3
[55] Leigh Phoenix, Adv. Appl. Prob. (Israel) 5(2) pp 200– (1973) · Zbl 0272.60006 · doi:10.2307/1426033
[56] Rinaldi, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 83(2-4) pp 046126– (2011) · doi:10.1103/PhysRevE.83.046126
[57] Rinaldi, Contin. Mech. Thermodyn. 25(2-4) pp 359– (2013) · Zbl 1343.74045 · doi:10.1007/s00161-012-0265-6
[58] Hild, Strain 42 pp 69– (2006) · doi:10.1111/j.1475-1305.2006.00258.x
[59] M. Moncada
[60] Garbowski, J. Mech. Mater. Struct. 6(1-4) pp 181– (2011) · doi:10.2140/jomms.2011.6.181
[61] Pham, C.R. Mecanique 338 pp 191– (2010) · Zbl 1300.74046 · doi:10.1016/j.crme.2010.03.009
[62] Pham, C.R. Mecanique 338 pp 199– (2010) · Zbl 1300.74047 · doi:10.1016/j.crme.2010.03.012
[63] Sciarra, Int. J. Solids Struct. 44(20) pp 6607– (2007) · Zbl 1166.74341 · doi:10.1016/j.ijsolstr.2007.03.003
[64] dell’Isola, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 465(2107) pp 2177– (2009) · Zbl 1186.74019 · doi:10.1098/rspa.2008.0530
[65] dell’Isola, Z. Angew. Math. Mech. 92(1) pp 52– (2012) · Zbl 1247.74031 · doi:10.1002/zamm.201100022
[66] L. Placidi G. Rosi I. Giorgio A. Madeo
[67] G. Rosi I. Giorgio V.A. Eremeyev
[68] dell’Isola, Arch. Mech. 45 pp 333– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.