×

Completing the scalar and fermionic universal one-loop effective action. (English) Zbl 1434.81128

Summary: We extend the known Universal One-Loop Effective Action (UOLEA) by all operators which involve scalars and fermions, not including contributions arising from open covariant derivatives. Our generic analytic expressions for the one-loop Wilson coefficients of effective operators up to dimension six allow for an application of the UOLEA to a broader class of UV-complete models. We apply our generic results to various effective theories of supersymmetric models, where different supersymmetric particles are integrated out at a high mass scale.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81V74 Fermionic systems in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
[4] Jegerlehner, F., The muon g − 2 in progress, Acta Phys. Polon., B 49, 1157 (2018) · doi:10.5506/APhysPolB.49.1157
[5] Haber, He; Kane, Gl, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept., 117, 75 (1985) · doi:10.1016/0370-1573(85)90051-1
[6] Allanach, Bc; Voigt, A., Uncertainties in the lightest C P even Higgs boson mass prediction in the minimal supersymmetric standard model: fixed order versus effective field theory prediction, Eur. Phys. J., C 78, 573 (2018) · doi:10.1140/epjc/s10052-018-6046-z
[7] Bagnaschi, E., MSSM Higgs boson searches at the LHC: benchmark scenarios for run 2 and beyond, Eur. Phys. J., C 79, 617 (2019) · doi:10.1140/epjc/s10052-019-7114-8
[8] Drozd, A.; Ellis, J.; Quevillon, J.; You, T., The universal one-loop effective action, JHEP, 03, 180 (2016) · doi:10.1007/JHEP03(2016)180
[9] Ellis, Sar; Quevillon, J.; You, T.; Zhang, Z., Extending the universal one-loop effective action: heavy-light coefficients, JHEP, 08, 054 (2017) · doi:10.1007/JHEP08(2017)054
[10] Summ, B.; Voigt, A., Extending the universal one-loop effective action by regularization scheme translating operators, JHEP, 08, 026 (2018) · Zbl 1396.83040 · doi:10.1007/JHEP08(2018)026
[11] Gaillard, Mk, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys., B 268, 669 (1986) · doi:10.1016/0550-3213(86)90264-6
[12] Cheyette, O., Effective action for the standard model with large Higgs mass, Nucl. Phys., B 297, 183 (1988) · doi:10.1016/0550-3213(88)90205-2
[13] Haba, N.; Kaneta, K.; Matsumoto, S.; Nabeshima, T., A simple method of calculating effective operators, Acta Phys. Polon., B 43, 405 (2012) · doi:10.5506/APhysPolB.43.405
[14] Henning, B.; Lu, X.; Murayama, H., How to use the Standard Model effective field theory, JHEP, 01, 023 (2016) · Zbl 1388.81246 · doi:10.1007/JHEP01(2016)023
[15] Henning, B.; Lu, X.; Murayama, H., One-loop matching and running with covariant derivative expansion, JHEP, 01, 123 (2018) · Zbl 1384.81103 · doi:10.1007/JHEP01(2018)123
[16] Ellis, Sar; Quevillon, J.; You, T.; Zhang, Z., Mixed heavy-light matching in the universal one-loop effective action, Phys. Lett., B 762, 166 (2016) · Zbl 1390.81281 · doi:10.1016/j.physletb.2016.09.016
[17] Fuentes-Martin, J.; Portoles, J.; Ruiz-Femenia, P., Integrating out heavy particles with functional methods: a simplified framework, JHEP, 09, 156 (2016) · Zbl 1390.81694 · doi:10.1007/JHEP09(2016)156
[18] Zhang, Z., Covariant diagrams for one-loop matching, JHEP, 05, 152 (2017) · Zbl 1380.81136 · doi:10.1007/JHEP05(2017)152
[19] Staub, F., From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun., 181, 1077 (2010) · Zbl 1215.81008 · doi:10.1016/j.cpc.2010.01.011
[20] Staub, F., Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun., 182, 808 (2011) · Zbl 1214.81168 · doi:10.1016/j.cpc.2010.11.030
[21] F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun.184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
[22] Staub, F., SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun., 185, 1773 (2014) · Zbl 1348.81026 · doi:10.1016/j.cpc.2014.02.018
[23] Athron, P., FlexibleSUSY — A spectrum generator generator for supersymmetric models, Comput. Phys. Commun., 190, 139 (2015) · doi:10.1016/j.cpc.2014.12.020
[24] P. Athron et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models, Comput. Phys. Commun.230 (2018) 145 [arXiv:1710.03760] [INSPIRE].
[25] Das Bakshi, S.; Chakrabortty, J.; Patra, Sk, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J., C 79, 21 (2019) · doi:10.1140/epjc/s10052-018-6444-2
[26] S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: BSM physics being realised as an SMEFT, in Theory report on the 11th FCC-ee workshop, A Blondel et al. eds., arXiv:1905.05078.
[27] Ball, Rd, Chiral gauge theory, Phys. Rept., 182, 1 (1989) · doi:10.1016/0370-1573(89)90027-6
[28] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys.B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
[29] Jantzen, B., Foundation and generalization of the expansion by regions, JHEP, 12, 076 (2011) · Zbl 1306.81420 · doi:10.1007/JHEP12(2011)076
[30] Callan, Cg Jr, Broken scale invariance in scalar field theory, Phys. Rev., D 2, 1541 (1970)
[31] Symanzik, K., Small distance behavior in field theory and power counting, Commun. Math. Phys., 18, 227 (1970) · Zbl 0195.55902 · doi:10.1007/BF01649434
[32] Bagnaschi, E.; Giudice, Gf; Slavich, P.; Strumia, A., Higgs mass and unnatural supersymmetry, JHEP, 09, 092 (2014) · doi:10.1007/JHEP09(2014)092
[33] Siegel, W., Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett., B 84, 193 (1979) · doi:10.1016/0370-2693(79)90282-X
[34] Bollini, Cg; Giambiagi, Jj, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim., B 12, 20 (1972)
[35] Ashmore, Jf, A method of gauge invariant regularization, Lett. Nuovo Cim., 4, 289 (1972) · doi:10.1007/BF02824407
[36] Cicuta, Gm; Montaldi, E., Analytic renormalization via continuous space dimension, Lett. Nuovo Cim., 4, 329 (1972) · doi:10.1007/BF02756527
[37] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[38] G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys.B 61 (1973) 455 [INSPIRE].
[39] D. Stöckinger, Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP03 (2005) 076 [hep-ph/0503129] [INSPIRE].
[40] Bagnaschi, E.; Pardo Vega, J.; Slavich, P., Improved determination of the Higgs mass in the MSSM with heavy superpartners, Eur. Phys. J., C 77, 334 (2017) · doi:10.1140/epjc/s10052-017-4885-7
[41] R. Huo, Effective field theory of integrating out sfermions in the MSSM: complete one-loop analysis, Phys. Rev.D 97 (2018) 075013 [arXiv:1509.05942] [INSPIRE].
[42] Aebischer, J.; Crivellin, A.; Greub, C.; Yamada, Y., The MSSM without gluinos; an effective field theory for the stop sector, Eur. Phys. J., C 77, 740 (2017) · doi:10.1140/epjc/s10052-017-5318-3
[43] I. Jack et al., Decoupling of the epsilon scalar mass in softly broken supersymmetry, Phys. Rev.D 50 (1994) R5481 [hep-ph/9407291] [INSPIRE].
[44] Delbourgo, R.; Prasad, Vb, Supersymmetry in the four-dimensional limit, J. Phys., G 1, 377 (1975) · doi:10.1088/0305-4616/1/4/001
[45] Capper, Dm; Jones, Drt; Van Nieuwenhuizen, P., Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories, Nucl. Phys., B 167, 479 (1980) · doi:10.1016/0550-3213(80)90244-8
[46] Stöckinger, D.; Unger, J., Three-loop MSSM Higgs-boson mass predictions and regularization by dimensional reduction, Nucl. Phys., B 935, 1 (2018) · Zbl 1398.81306 · doi:10.1016/j.nuclphysb.2018.08.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.