×

Some general Lagrange interpolations over simplex finite elements with reference to derivative singularities. (English) Zbl 0466.73088


MSC:

74S05 Finite element methods applied to problems in solid mechanics
65D05 Numerical interpolation
74R05 Brittle damage
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Argyris, J. H.; Buck, K. E.; Fried, I.; Mareczek, G.; Scharpf, D. W., Some new elements for matrix displacement methods, (Proc. 2nd Conference on Matrix Methods in Structural Mechanics. Proc. 2nd Conference on Matrix Methods in Structural Mechanics, Air Force Inst. Tech., Wright Patterson Air Force Base, OH (1968))
[2] Argyris, J. H.; Fried, I., The LUMINA element for the matrix displacement method, Aero. J., 72, 514-517 (1968)
[3] Taylor, R. L., On completeness of shape functions for finite element analysis, Internat. J. Numer. Meths. Engrg., 4, 17-22 (1972) · Zbl 0255.73095
[4] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill London · Zbl 0435.73072
[5] Okabe, M.; Yamada, Y.; Nishiguchi, I., Reconsiderations on rectangular Lagrange families with hierarchy-ranking bases, Comput. Meths. Appl. Mech. Engrg., 23, 369-390 (1980) · Zbl 0442.73071
[6] Argyris, J. H., Triangular elements with linearly varying strain for the matrix displacement methods, J. Roy. Aero. Soc., 69, 711-713 (1965)
[7] Argyris, J. H.; Fried, I.; Scharpf, D. W., The TET20 and the TEA8 elements for the matrix displacement method, Aero. J., 72, 618-625 (1968)
[8] Silvester, P., Higher order polynomial triangular finite elements for potential problems, Internat. J. Engrg. Sci., 7, 849-861 (1968) · Zbl 0185.42201
[9] Ciarlet, P. G.; Raviart, P. A., General Lagrange and Hermite interpolation in \(R^n\) with applications to finite element methods, Arch. Rat. Mech. Anal., 46, 177-199 (1972) · Zbl 0243.41004
[10] Mitchell, A. R.; Wait, R., The Finite Element Method in Partial Differential Equations (1977), Wiley: Wiley London · Zbl 0344.35001
[11] Okabe, M.; Yamada, Y.; Nishiguchi, I., Basis transformation of trial function space in Lagrange interpolation, Comput. Meths. Appl. Mech. Engrg., 23, 85-99 (1980) · Zbl 0447.65003
[12] Pasini, A.; Peano, A.; Riccioni, R.; Sardella, L., A self-adaptive finite element analysis, (IKOSS Cong. (1977), Baden) · Zbl 0394.73002
[13] Katz, I. N.; Peano, A. G.; Rossow, M. P., Nodal variables for complete conforming finite elements of arbitrary polynomial order, Comput. Meths. Appls., 4, 85-112 (1978) · Zbl 0402.73068
[14] Peano, A.; Pasini, A.; Riccioni, R.; Sardella, L., Adaptive approximations in finite element structural analysis, Comput. and Structures, 10, 85-112 (1979) · Zbl 0394.73002
[15] Bathe, K. J.; Wilson, E. L., Numerical Methods in Finite Element Analysis (1976), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0528.65053
[16] Irons, B. M., A technique for degenerating brick-type isoparametric elements using hierarchical midside nodes, Internat. J. Numer. Meths. Engrg., 8, 203-209 (1973)
[17] Yamada, Y.; Ezawa, Y.; Nishiguchi, I.; Okabe, M., Reconsiderations on singularity or crack tip elements, Internat. J. Numer. Meths. Engrg., 14, 1525-1544 (1979) · Zbl 0411.73066
[18] Okabe, M., Fundamental theory of the semi-radial singularity mapping with applications to fracture mechanics, Comput. Meths. Appl. Mech. Engrg., 26, 53-73 (1981) · Zbl 0463.73091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.