×

Continuous anisotropic damage as a twin modelling of discrete bi-dimensional fracture. (English) Zbl 1480.74267

Summary: In this contribution, the use of discrete simulations to formulate an anisotropic damage model is investigated. It is proposed to use a beam-particle model to perform numerical characterization tests. Indeed, this discrete model explicitly describes cracking by allowing displacement discontinuities and thus capture crack induced anisotropy of quasi-brittle materials such as concrete. Through 2D discrete simulations, the evolution of the effective elasticity tensor for various loading tests, up to failure, is obtained. The analysis of these tensors through bi-dimensional harmonic decomposition is then performed to estimate the tensorial damage evolution. It is shown in a quantitative manner that a second order – instead of a fourth order – damage tensor is sufficient in practice, even when the micro-cracks are strongly interacting. As a by-product of present work we obtain an upper bound of the distance to the orthotropic symmetry class of bi-dimensional elasticity.

MSC:

74R05 Brittle damage
74E10 Anisotropy in solid mechanics
74S99 Numerical and other methods in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] André, D.; Iordanoff, I.; Charles, J.-l.; Néauport, J., Discrete element method to simulate continuous material by using the cohesive beam model, Comput. Methods Appl. Mech. Engrg., 213, 113-125 (2012) · Zbl 1243.74197
[2] André, D.; Jebahi, M.; Iordanoff, I.; Charles, J.-l.; Néauport, J., Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter, Comput. Methods Appl. Mech. Engrg., 265, 136-147 (2013) · Zbl 1286.74003
[3] Backus, G., A geometrical picture of anisotropic elastic tensors, Rev. Geophys., 8, 3, 633-671 (1970)
[4] Badreddine, H.; Saanouni, K.; Nguyen, T. D., Damage anisotropy and its effect on the plastic anisotropy evolution under finite strains, Int. J. Solids Struct., 63, 11-31 (2015)
[5] Bagi, K., Stress and strain in granular assemblies, Mech. Mater., 22, 3, 165-177 (1996)
[6] Brunig, M., An anisotropic ductile damage model based on irreversible thermodynamics, Int. J. Plast., 19, 1679-1714 (2003) · Zbl 1098.74050
[7] Carol, I.; Rizzi, E.; Willam, K., On the formulation of anisotropic elastic degradation. Part i: Theory based on a pseudo-logarithmic damage tensor rate, Int. J. Solids Struct., 38, 4, 491-518 (2001) · Zbl 1006.74007
[8] Carpiuc, A.; Poncelet, M.; Réthoré, J.; Roux, S., Carpiuc benchmark overview: crack advance, reorientation, propagation and initiation under complex loadings, Adv. Model. Simul. Eng. Sci., 5, 1, 1-15 (2018)
[9] Chaboche, J.-L., Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec endommagement.Technical report (1978), Université Paris VI and Onera
[10] Chaboche, J.-L., Le concept de contrainte effective appliqué à l’élasticité et à la viscoplasticité en présence d’un endommagement anisotrope, (Boehler, J.-P., Colloque Int. CNRS 295, Villard de Lans (1979), Martinus Nijhoff Publishers and Editions du CNRS, 1982), 737-760 · Zbl 0516.73014
[11] Chaboche, J.-L., Anisotropic creep damage in the framework of continuum damage mechanics, Nucl. Eng. Des., 79, 3, 309-319 (1984)
[12] Challamel, N.; Picandet, V.; Pijaudier-Cabot, G., From discrete to nonlocal continuum damage mechanics: Analysis of a lattice system in bending using a continualized approach, Int. J. Damage Mech., 24, 7, 983-1012 (2015)
[13] Cordebois, J.; Sidoroff, F., Endommagement anisotrope en élasticité et plasticité, J. Meca. Theory Appl. Spec. Vol., 45-65 (1982) · Zbl 0494.73094
[14] Cormery, F.; Welemane, H., A stress-based macroscopic approach for microcracks unilateral effect, Comp. Mat. Sci., 47, 727-738 (2010)
[15] Cundall, P. A.; Strack, O. D., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979)
[16] Cusatis, G.; Bažant, Z. P.; Cedolin, L., Confinement-shear lattice model for concrete damage in tension and compression: I. Theory, J. Eng. Mech., 129, 12, 1439-1448 (2003)
[17] D’Addetta, G. A.; Kun, F.; Ramm, E., On the application of a discrete model to the fracture process of cohesive granular materials, Granul. Matter, 4, 77-90 (2002) · Zbl 1074.74633
[18] Delaplace, A., Modélisation discrète appliquée au comportement des matériaux et des structures, Mém. Habil. Dir. Rech. Ecole Norm. Supér. Cachan (2008)
[19] Delaplace, A.; Desmorat, R., Discrete 3d model as complimentary numerical testing for anisotropic damage, Int. J. Fract., 148, 115-128 (2007) · Zbl 1264.74198
[20] Desmorat, R., Positivity of intrinsic dissipation of a class of nonstandard anisotropic damage models, C. R. Mec., 334, 10, 587-592 (2006) · Zbl 1177.74056
[21] Desmorat, R., Anisotropic damage modeling of concrete materials, Int. J. Damage Mech., 25, 6, 818-852 (2016)
[22] Desmorat, B.; Desmorat, R., Tensorial polar decomposition of 2d fourth-order tensors, C. R. Méc., 343, 9, 471-475 (2015)
[23] Desmorat, B.; Desmorat, R., Second order tensorial framework for 2d medium with open and closed cracks, Eur. J. Mech. A Solids, 58, 262-277 (2016) · Zbl 1406.74531
[24] Desmorat, R.; Gatuingt, F.; Ragueneau, F., Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials, Eng. Fract. Mech., 74, 10, 1539-1560 (2007)
[25] Desmorat, B.; Olive, M.; Auffray, N.; Desmorat, R.; Kolev., B., Computation of minimal covariants bases for 2d coupled constitutive laws (2020), Hal, hal-02888267 · Zbl 1482.74050
[26] Desmorat, B.; Olive, M.; Auffray, N.; Desmorat, R.; Kolev, B., Computation of minimal covariants bases for 2d coupled constitutive laws (2020), arXiv preprint arXiv:2007.01576 · Zbl 1482.74050
[27] Dormieux, L.; Kondo, D., Micromechanics of Fracture and Damage (2016), John Wiley & Sons
[28] Ergenzinger, C.; Seifried, R.; Eberhard, P., A discrete element model to describe failure of strong rock in uniaxial compression, Granul. Matter, 13, 4, 341-364 (2011)
[29] Fassin, M.; Eggersmann, R.; Wulfinghoff, S.; Reese, S., Gradient-extended anisotropic brittle damage modeling using a second order damage tensor – theory, implementation and numerical examples, Int. J. Solids Struct., 167, 93-126 (2019)
[30] Fichant, S.; Laborderie, C.; Pijaudier-Cabot, G., Isotropic and anisotropic descriptions of damage in concrete structures, Int. J. Mech. Cohes. Frict. Mater., 4, 339-359 (1999)
[31] Ghasemi, M.; Falahatgar, S., Discrete element simulation of damage evolution in coatings, Granul. Matter, 22, 2, 1-16 (2020)
[32] Halm, D.; Dragon, A., An anisotropic model of damage and frictional sliding for brittle materials, Eur. J. Mech. A Solids, 17, 439-460 (1998) · Zbl 0933.74055
[33] Herrmann, H. J.; Hansen, A.; Roux, S., Fracture of disordered, elastic lattices in two dimensions, Phys. Rev. B, 39, 1, 637 (1989)
[34] Hrennikoff, A., Solution of problems of elasticity by the framework method, J. Appl. Mech. (1941) · Zbl 0061.42112
[35] Huang, H.; Spencer, B.; Hales, J., Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets, Nucl. Eng. Des., 278, 515-528 (2014)
[36] Ji, S.; Di, S.; Long, X., Dem simulation of uniaxial compressive and flexural strength of sea ice: parametric study, J. Eng. Mech., 143, 1, C4016010 (2017)
[37] Jivkov, A., Structure of micro-crack population and damage evolution in quasi-brittle media, Theor. Appl. Fract. Mech., 70, 1-9 (2014)
[38] Ju, J., On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects, Int. J. Sol. Struct., 25, 803-833 (1989) · Zbl 0715.73055
[39] Kachanov, M., Effective elastic properties of cracked solids: critical review of some basic concepts, Appl. Mech. Rev., 45, 8, 304-335 (1992)
[40] Kachanov, M., Elastic solids with many cracks and related problems, (Adv. in Applied Mechanics, Vol. 1 (1993), J. Hutchinson and T. Wu Ed., Academic Press Pub.), 259-445 · Zbl 0803.73057
[41] Ladevèze, P., Sur une Théorie de l’endommagement AnisotropeTechnical Report (1983), Internal report 34 of LMT-Cachan
[42] Leckie, F.; Onat, E. T., (Tensorial Nature of Damage Measuring Internal Variables (1980), J. Hult and J. Lemaitre eds, Springer Berlin), 140-155
[43] Leckie, F.; Onat, E., Tensorial nature of damage measuring internal variables, (Physical Non-Linearities in Structural Analysis (1981), Springer), 140-155
[44] Lemaitre, J.; Chaboche, J.-L., Mécanique des Matériaux Solides (1985), Dunod, Cambridge University Press, english translation 1990 ’Mechanics of Solid Materials’
[45] Lemaitre, J.; Desmorat, R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures (2005), Springer Science & Business Media
[46] Lemaitre, J.; Desmorat, R.; Sauzay, M., Anisotropic damage law of evolution, Eur. J. Mech., A/ Solids, 19, 187-208 (2000) · Zbl 0986.74007
[47] Lilja, V.-P.; Polojärvi, A.; Tuhkuri, J.; Paavilainen, J., Effective material properties of a finite element-discrete element model of an ice sheet, Comput. Struct., 224, Article 106107 pp. (2019)
[48] Mattiello, A.; Desmorat, R., Lode angle dependency due to anisotropic damage, Int. J. Damage Mech., 30, 2, 214-259 (2021)
[49] Mazars, J., Application de la Mécanique de l’endommagement au Comportement Non Linéaire et à la Rupture du Béton de Structure (1984), Université Pierre et Marie Curie - Paris 6, (Ph.D. thesis)
[50] Mazars, J.; Berthaud, Y.; Ramtani, S., The unilateral behaviour of damaged concrete, Eng. Fract. Mech., 35, 4-5, 629-635 (1990)
[51] Meguro, K.; Hakuno, M., Fracture analyses of concrete structures by the modified distinct element method, Doboku Gakkai Ronbunshu, 1989, 410, 113-124 (1989)
[52] Menzel, A.; Ekh, M.; Steinmann, P.; Runesson, K., Anisotropic damage coupled to plasticity: Modelling based on the effective configuration concept, Internat. J. Numer. Methods Engrg., 54, 1409-1430 (2002) · Zbl 1034.74004
[53] Murakami, S., Mechanical modeling of material damage, ASME J. Appl. Mech., 55, 280-286 (1988)
[54] Nitka, M.; Tejchman, J., Modelling of concrete behaviour in uniaxial compression and tension with dem, Granul. Matter, 17, 1, 145-164 (2015)
[55] Obermayr, M.; Dressler, K.; Vrettos, C.; Eberhard, P., A bonded-particle model for cemented sand, Comput. Geotech., 49, 299-313 (2013)
[56] Olive, M.; Kolev, B.; Desmorat, R.; Desmorat, B., Characterization of the symmetry class of an elasticity tensor using polynomial covariants (2018), arXiv:1807.08996 [math.RT] · Zbl 1393.74025
[57] Olive, M.; Kolev, B.; Desmorat, B.; Desmorat, R., Harmonic factorization and reconstruction of the elasticity tensor, J. Elasticity, 132, 1, 67-101 (2018) · Zbl 1393.74025
[58] Oliver-Leblond, C., Discontinuous crack growth and toughening mechanisms in concrete: A numerical study based on the beam-particle approach, Eng. Fract. Mech., 207, 1-22 (2019)
[59] Papa, E.; Talierco, A., Anisotropic damage model for the multi-axial static and fatigue behaviour of plain concrete, Eng. Fract. Mech., 55, 163-179 (1996)
[60] Poisson, S.-D., Mémoire sur l’Équilibre et le Mouvement des Corps Élastiques (1828), F. Didot
[61] Potyondy, D. O.; Cundall, P., A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., 41, 8, 1329-1364 (2004)
[62] Pröchtel, P.; Häußler-Combe, U., On the dissipative zone in anisotropic damage models for concrete, Int. J. Solids Struct., 45, 4384-4406 (2008) · Zbl 1169.74540
[63] Ramtani, S.; Berthaud, Y.; Mazars, J., Orthotropic behavior of concrete with directional aspects: modelling and experiments, Nucl. Eng. Des., 133, 1, 97-111 (1992)
[64] Riikilä, T.; Tallinen, T.; Åström, J.; Timonen, J., A discrete-element model for viscoelastic deformation and fracture of glacial ice, Comput. Phys. Comm., 195, 14-22 (2015)
[65] Rinaldi, A., Bottom-up modeling of damage in heterogeneous quasi-brittle solids, Contin. Mech. Thermodyn., 25, 2-4, 359-373 (2013) · Zbl 1343.74045
[66] Rinaldi, A.; Lai, Y.-C., Statistical damage theory of 2d lattices: Energetics and physical foundations of damage parameter, Int. J. Plast., 23, 10-11, 1796-1825 (2007) · Zbl 1155.74402
[67] Schlangen, E.; Van Mier, J. G.M., Simple lattice model for numerical simulation of fracture of concrete materials and structures, Mater. Struct., 25, 9, 534-542 (1992)
[68] Schouten, J. A., Tensor Analysis for Physicists (1989), Courier Corporation · Zbl 0044.38302
[69] Spencer, A., A note on the decomposition of tensors into traceless symmetric tensors, Internat. J. Engrg. Sci., 8, 6, 475-481 (1970) · Zbl 0205.05103
[70] Tillemans, H.-J.; Herrmann, H. J., Simulating deformations of granular solids under shear, Physica A, 217, 3-4, 261-288 (1995)
[71] Vannucci, P., Plane anisotropy by the polar method, Meccanica, 40, 4-6, 437-454 (2005) · Zbl 1106.74016
[72] Vannucci, P.; Verchery, G., Stiffness design of laminates using the polar method, Int. J. Solids Struct., 38, 9281-9894 (2001) · Zbl 1016.74019
[73] Vassaux, M.; Oliver-Leblond, C.; Richard, B.; Ragueneau, F., Beam-particle approach to model cracking and energy dissipation in concrete: Identification strategy and validation, Cem. Concr. Compos., 70, 1-14 (2016)
[74] Vassaux, M.; Richard, B.; Ragueneau, F.; Millard, A., Regularised crack behaviour effects on continuum modelling of quasi-brittle materials under cyclic loading, Eng. Fract. Mech., 149, 18-36 (2015)
[75] Vassaux, M.; Richard, B.; Ragueneau, F.; Millard, A.; Delaplace, A., Lattice models applied to cyclic behavior description of quasi-brittle materials: advantages of implicit integration, Int. J. Numer. Anal. Methods Geomech., 39, 7, 775-798 (2015)
[76] Verchery, G., Les invariants des tenseurs d’ordre 4 du type de l’élasticité, (Mechanical Behavior of Anisotropic Solids/Comportment Méchanique Des Solides Anisotropes (1982), Springer), 93-104 · Zbl 0516.73015
[77] Vianello, M., An integrity basis for plane elasticity tensors, Arch. Mech., 49, 1, 197-208 (1997) · Zbl 0876.73011
[78] Voyiadjis, G. Z.; Kattan, P. I., Damage mechanics with fabric tensors, Mech. Adv. Mater. Struct., 13, 4, 285-301 (2006)
[79] Willam, K.; Pramono, E.; Sture, S., Fundamental issues of smeared crack models, (Fracture of Concrete and Rock (1989), Springer), 142-157
[80] Wulfinghoff, S.; Fassin, M.; Reese, S., Damage growth criterion for anisotropic damage models motivated from micromechanics, Int. J. Solids Struct., 121, 21-32 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.