Sin, Yongho; Kim, Kwangyon; Kim, Ryul; Han, Songchol Constructing new differentially 4-uniform permutations from known ones. (English) Zbl 07174373 Finite Fields Appl. 63, Article ID 101646, 13 p. (2020). MSC: 11T06 11T71 94A60 PDF BibTeX XML Cite \textit{Y. Sin} et al., Finite Fields Appl. 63, Article ID 101646, 13 p. (2020; Zbl 07174373) Full Text: DOI
Xu, Guangkui; Qu, Longjiang Two classes of differentially 4-uniform permutations over \(\mathbb{F}_{2^n}\) with \(n\) even. (English) Zbl 07136842 Adv. Math. Commun. 14, No. 1, 97-110 (2020). MSC: 94A60 11T71 06E30 PDF BibTeX XML Cite \textit{G. Xu} and \textit{L. Qu}, Adv. Math. Commun. 14, No. 1, 97--110 (2020; Zbl 07136842) Full Text: DOI
Fu, Shihui; Feng, Xiutao Involutory differentially 4-uniform permutations from known constructions. (English) Zbl 1403.94058 Des. Codes Cryptography 87, No. 1, 31-56 (2019). MSC: 94A60 94C10 14G50 PDF BibTeX XML Cite \textit{S. Fu} and \textit{X. Feng}, Des. Codes Cryptography 87, No. 1, 31--56 (2019; Zbl 1403.94058) Full Text: DOI
Peng, Jie; Tan, Chik How; Wang, Qichun New secondary constructions of differentially 4-uniform permutations over \(\mathbb F_{2^{2k}}\). (English) Zbl 1421.94067 Int. J. Comput. Math. 94, No. 8, 1670-1693 (2017). MSC: 94A60 11T71 68P25 PDF BibTeX XML Cite \textit{J. Peng} et al., Int. J. Comput. Math. 94, No. 8, 1670--1693 (2017; Zbl 1421.94067) Full Text: DOI
Chen, Xi; Deng, Yazhi; Zhu, Min; Qu, Longjiang An equivalent condition on the switching construction of differentially 4-uniform permutations on \(\mathbb F_{2^{2k}}\) from the inverse function. (English) Zbl 1421.94045 Int. J. Comput. Math. 94, No. 6, 1252-1267 (2017). MSC: 94A60 11T06 11T71 PDF BibTeX XML Cite \textit{X. Chen} et al., Int. J. Comput. Math. 94, No. 6, 1252--1267 (2017; Zbl 1421.94045) Full Text: DOI
Peng, Jie; Tan, Chik How New differentially 4-uniform permutations by modifying the inverse function on subfields. (English) Zbl 1366.94526 Cryptogr. Commun. 9, No. 3, 363-378 (2017). MSC: 94A60 11T71 PDF BibTeX XML Cite \textit{J. Peng} and \textit{C. H. Tan}, Cryptogr. Commun. 9, No. 3, 363--378 (2017; Zbl 1366.94526) Full Text: DOI
Peng, Jie; Tan, Chik How New explicit constructions of differentially 4-uniform permutations via special partitions of \(\mathbb{F}_{2^{2 k}}\). (English) Zbl 1408.94957 Finite Fields Appl. 40, 73-89 (2016). MSC: 94A60 11T71 12E20 PDF BibTeX XML Cite \textit{J. Peng} and \textit{C. H. Tan}, Finite Fields Appl. 40, 73--89 (2016; Zbl 1408.94957) Full Text: DOI
Qu, Longjiang; Tan, Yin; Li, Chao; Gong, Guang More constructions of differentially 4-uniform permutations on \(\mathbb {F}_{2^{2k}}\). (English) Zbl 1401.94239 Des. Codes Cryptography 78, No. 2, 391-408 (2016). MSC: 94B25 94A60 PDF BibTeX XML Cite \textit{L. Qu} et al., Des. Codes Cryptography 78, No. 2, 391--408 (2016; Zbl 1401.94239) Full Text: DOI
Xie, Tao; Chen, Yuan; Zeng, Xiangyong Construction of a class of differentially 4-uniform permutations. (Chinese. English summary) Zbl 1349.94139 J. Syst. Sci. Math. Sci. 35, No. 10, 1194-1208 (2015). MSC: 94A60 PDF BibTeX XML Cite \textit{T. Xie} et al., J. Syst. Sci. Math. Sci. 35, No. 10, 1194--1208 (2015; Zbl 1349.94139)
Zha, Zhengang; Hu, Lei; Sun, Siwei; Shan, Jinyong Further results on differentially 4-uniform permutations over \(\mathbb{F}_{2^{2m}}\). (English) Zbl 1380.94134 Sci. China, Math. 58, No. 7, 1577-1588 (2015). MSC: 94A60 11T71 PDF BibTeX XML Cite \textit{Z. Zha} et al., Sci. China, Math. 58, No. 7, 1577--1588 (2015; Zbl 1380.94134) Full Text: DOI
Xu, Guangkui; Cao, Xiwang Constructing new piecewise differentially 4-uniform permutations from known APN functions. (English) Zbl 1333.94050 Int. J. Found. Comput. Sci. 26, No. 5, 599-609 (2015). MSC: 94A60 11T71 PDF BibTeX XML Cite \textit{G. Xu} and \textit{X. Cao}, Int. J. Found. Comput. Sci. 26, No. 5, 599--609 (2015; Zbl 1333.94050) Full Text: DOI
Zha, Zhengbang; Hu, Lei; Sun, Siwei Constructing new differentially 4-uniform permutations from the inverse function. (English) Zbl 1305.94084 Finite Fields Appl. 25, 64-78 (2014). MSC: 94A60 11T71 14G50 PDF BibTeX XML Cite \textit{Z. Zha} et al., Finite Fields Appl. 25, 64--78 (2014; Zbl 1305.94084) Full Text: DOI
Qu, Longjiang; Xiong, Hai; Li, Chao A negative answer to Bracken-Tan-Tan’s problem on differentially 4-uniform permutations over \(\mathbb F_2n\). (English) Zbl 1284.94102 Finite Fields Appl. 24, 55-65 (2013). MSC: 94A60 06E30 11T06 11T71 PDF BibTeX XML Cite \textit{L. Qu} et al., Finite Fields Appl. 24, 55--65 (2013; Zbl 1284.94102) Full Text: DOI
Tan, Yin; Qu, Longjiang; Tan, Chik How; Li, Chao New families of differentially 4-uniform permutations over \({\mathbb F}_{2^{2k}}\). (English) Zbl 1290.94034 Helleseth, Tor (ed.) et al., Sequences and their applications – SETA 2012. 7th international conference, Waterloo, ON, Canada, June 4–8, 2012. Proceedings. Berlin: Springer (ISBN 978-3-642-30614-3/pbk). Lecture Notes in Computer Science 7280, 25-39 (2012). MSC: 94A55 11T06 PDF BibTeX XML Cite \textit{Y. Tan} et al., Lect. Notes Comput. Sci. 7280, 25--39 (2012; Zbl 1290.94034) Full Text: DOI
Bracken, Carl; Tan, Chik How; Tan, Yin Binomial differentially 4 uniform permutations with high nonlinearity. (English) Zbl 1267.94043 Finite Fields Appl. 18, No. 3, 537-546 (2012). Reviewer: Guillermo Morales-Luna (México D. F.) MSC: 94A60 11T71 14G50 PDF BibTeX XML Cite \textit{C. Bracken} et al., Finite Fields Appl. 18, No. 3, 537--546 (2012; Zbl 1267.94043) Full Text: DOI