Demir, M.; Rodger, C. A. Maximal sets of Hamilton cycles in \(K \left( n^r ; \lambda_1 , \lambda_2\right)\). (English) Zbl 07233235 Discrete Math. 343, No. 10, Article ID 112010, 5 p. (2020). MSC: 05 PDF BibTeX XML Cite \textit{M. Demir} and \textit{C. A. Rodger}, Discrete Math. 343, No. 10, Article ID 112010, 5 p. (2020; Zbl 07233235) Full Text: DOI
Demir, Mustafa; Rodger, C. A. Embedding an edge-coloring of \(K(n^r;\lambda_1,\lambda_2)\) into a Hamiltonian decomposition of \(K(n^{r+2};\lambda_1,\lambda_2)\). (English) Zbl 07202744 J. Graph Theory 93, No. 1, 49-63 (2020). MSC: 05C PDF BibTeX XML Cite \textit{M. Demir} and \textit{C. A. Rodger}, J. Graph Theory 93, No. 1, 49--63 (2020; Zbl 07202744) Full Text: DOI
Bahmanian, M. A. Factorizations of complete multipartite hypergraphs. (English) Zbl 1351.05160 Discrete Math. 340, No. 2, 46-50 (2017). MSC: 05C65 05C70 PDF BibTeX XML Cite \textit{M. A. Bahmanian}, Discrete Math. 340, No. 2, 46--50 (2017; Zbl 1351.05160) Full Text: DOI
Bahmanian, Amin; Newman, Mike Embedding factorizations for 3-uniform hypergraphs II: \(r\)-factorizations into \(s\)-factorizations. (English) Zbl 1337.05084 Electron. J. Comb. 23, No. 2, Research Paper P2.42, 14 p. (2016). MSC: 05C70 05C65 05C15 05B40 05B05 PDF BibTeX XML Cite \textit{A. Bahmanian} and \textit{M. Newman}, Electron. J. Comb. 23, No. 2, Research Paper P2.42, 14 p. (2016; Zbl 1337.05084) Full Text: Link
Amin Bahmanian, M.; Rodger, C. A. Embedding an edge-colored \(K(a^{(p)};\lambda,\mu)\) into a Hamiltonian decomposition of \(K(a^{(p+r)};\lambda,\mu)\). (English) Zbl 1268.05050 Graphs Comb. 29, No. 4, 747-755 (2013). MSC: 05C10 05C15 05C51 05C38 PDF BibTeX XML Cite \textit{M. Amin Bahmanian} and \textit{C. A. Rodger}, Graphs Comb. 29, No. 4, 747--755 (2013; Zbl 1268.05050) Full Text: DOI
Bahmanian, Amin; Rodger, Chris Embedding factorizations for 3-uniform hypergraphs. (English) Zbl 1264.05088 J. Graph Theory 73, No. 1-2, 216-224 (2013). MSC: 05C65 05C60 05C70 PDF BibTeX XML Cite \textit{A. Bahmanian} and \textit{C. Rodger}, J. Graph Theory 73, No. 1--2, 216--224 (2013; Zbl 1264.05088) Full Text: DOI
Bahmanian, M. Amin Detachments of amalgamated 3-uniform hypergraphs: factorization consequences. (English) Zbl 1258.05087 J. Comb. Des. 20, No. 11-12, 527-549 (2012). MSC: 05C65 05C70 PDF BibTeX XML Cite \textit{M. A. Bahmanian}, J. Comb. Des. 20, No. 11--12, 527--549 (2012; Zbl 1258.05087) Full Text: DOI
Jordán, Tibor; Szigeti, Zoltán Detachments preserving local edge-connectivity of graphs. (English) Zbl 1038.05033 SIAM J. Discrete Math. 17, No. 1, 72-87 (2003). Reviewer: Mark E. Watkins (Syracuse) MSC: 05C40 90C27 PDF BibTeX XML Cite \textit{T. Jordán} and \textit{Z. Szigeti}, SIAM J. Discrete Math. 17, No. 1, 72--87 (2003; Zbl 1038.05033) Full Text: DOI
Berg, Alex R.; Jackson, Bill; Jordán, Tibor Highly edge-connected detachments of graphs and digraphs. (English) Zbl 1014.05043 J. Graph Theory 43, No. 1, 67-77 (2003). Reviewer: Jun-Ming Xu (Hefei) MSC: 05C40 05C20 PDF BibTeX XML Cite \textit{A. R. Berg} et al., J. Graph Theory 43, No. 1, 67--77 (2003; Zbl 1014.05043) Full Text: DOI
Nash-Williams, C. St. J. A. A direct proof of a theorem on detachments of finite graphs. (English) Zbl 0849.05062 J. Comb. Math. Comb. Comput. 19, 314-318 (1995). Reviewer: M.E.Watkins (Syracuse) MSC: 05C99 05C38 PDF BibTeX XML Cite \textit{C. St. J. A. Nash-Williams}, J. Comb. Math. Comb. Comput. 19, 314--318 (1995; Zbl 0849.05062)
Nash-Williams, C. St. J. A. Strongly connected mixed graphs and connected detachments of graphs. (English) Zbl 0849.05061 J. Comb. Math. Comb. Comput. 19, 33-47 (1995). Reviewer: M.E.Watkins (Syracuse) MSC: 05C99 05C20 05C40 PDF BibTeX XML Cite \textit{C. St. J. A. Nash-Williams}, J. Comb. Math. Comb. Comput. 19, 33--47 (1995; Zbl 0849.05061)