×

Supercyclic \(C_{0}\)-semigroups, stability and somewhere dense orbits. (English) Zbl 07053224

Summary: We show that a bounded, supercyclic \(C_0\)-semigroup is already stable. The supercyclic Bourdon and Feldman Theorem for \(C_0\)-semigroups is also proven.

MSC:

47Dxx Groups and semigroups of linear operators, their generalizations and applications
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bayart, F.; Matheron, E., Dynamics of Linear Operators (2009), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1187.47001
[2] Bernal-Gonzalez, L.; Grosse-Erdmann, K., Existence and nonexistence of hypercyclic semigroups, Proc. Amer. Math. Soc., 135, 3, 755-766 (2007) · Zbl 1123.47009
[3] Bourdon, P. S.; Feldman, N. S., Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., 52, 811-819 (2003) · Zbl 1049.47002
[4] Chill, R.; Tomilov, Y., Stability of operator semigroups: idea and results, (Perspectives in Operator Theory. Perspectives in Operator Theory, Banach Center Publ., vol. 75 (2007), Polish Acad. Sci.: Polish Acad. Sci. Warsaw), 71-109 · Zbl 1136.47026
[5] Conejero, J. A.; Mangino, E. M., Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators, Mediterr. J. Math., 7, 101-109 (2010) · Zbl 1215.47012
[6] Costakis, G.; Peris, A., Hypercyclic semigroups and somewhere dense orbits, C. R. Math. Acad. Sci. Paris, Ser. I, 335, 11, 895-898 (2002) · Zbl 1041.47003
[7] Desch, W.; Schappacher, W.; Webb, G. F., Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Systems, 17, 4, 793-819 (1997) · Zbl 0910.47033
[8] Engel, K.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0952.47036
[9] Kérchy, L., Cyclic properties and stability of commuting power bounded operators, Acta Sci. Math. (Szeged), 71, 299-312 (2005) · Zbl 1101.47005
[10] Matsui, M.; Yamada, M.; Takeo, F., Supercyclic and chaotic translation semigroups, Proc. Amer. Math. Soc., 131, 11, 3535-3546 (2003) · Zbl 1056.47029
[11] Neerven, J. V., The Asymptotic Behaviour of Semigroups of Linear Operators (2012), Birkhäuser
[12] Peris, A., Multihypercyclic operators are hypercyclic, Math. Z., 236, 779-786 (2001) · Zbl 0994.47011
[13] Rudin, W., Functional Analysis (1974), Tata McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.