×

zbMATH — the first resource for mathematics

Predictability, complexity, and catastrophe in a collapsible of population, development, and environmental interactions. (English) Zbl 0873.92035
Summary: More and more population forecasts are being produced with associated 95 percent confidence intervals. How confident are we of those confidence intervals? We produce a simulated dataset in which we know both past and future population sizes, and the true 95 percent confidence intervals at various future dates. We use the past data to produce population forecasts and estimated 95 percent confidence intervals using various functional forms. We then compare the true 95 percent confidence intervals with the estimated ones. This comparison shows that we are not at all confident of the estimated 95 percent confidence intervals.
Reviewer: Reviewer (Berlin)
MSC:
91D20 Mathematical geography and demography
62P99 Applications of statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0169-2070(92)90010-7 · doi:10.1016/0169-2070(92)90010-7
[2] DOI: 10.1016/0169-2070(92)90048-E · doi:10.1016/0169-2070(92)90048-E
[3] Akaike, H. Information theory and the extension of the maximum likelihood principle. 2nd International Symposium of Information Theory. Edited by: Petrov, B. N. and Csaki, F. pp.267–281. Budapest: Akailseoniai-Kiudo.
[4] DOI: 10.1016/0304-4076(81)90071-3 · Zbl 0457.62032 · doi:10.1016/0304-4076(81)90071-3
[5] DOI: 10.1016/0169-2070(90)90030-F · doi:10.1016/0169-2070(90)90030-F
[6] DOI: 10.2307/2289058 · Zbl 0613.62120 · doi:10.2307/2289058
[7] DOI: 10.1016/0169-2070(92)90055-E · doi:10.1016/0169-2070(92)90055-E
[8] DOI: 10.2307/2061412 · doi:10.2307/2061412
[9] DOI: 10.1093/biomet/76.2.297 · Zbl 0669.62085 · doi:10.1093/biomet/76.2.297
[10] DOI: 10.2307/1972799 · doi:10.2307/1972799
[11] DOI: 10.1016/0169-2070(92)90050-J · doi:10.1016/0169-2070(92)90050-J
[12] DOI: 10.1016/0169-2070(93)90004-7 · doi:10.1016/0169-2070(93)90004-7
[13] DOI: 10.2307/2290201 · doi:10.2307/2290201
[14] DOI: 10.2307/2060937 · doi:10.2307/2060937
[15] DOI: 10.2307/2061263 · doi:10.2307/2061263
[16] DOI: 10.1016/0169-2070(92)90056-F · doi:10.1016/0169-2070(92)90056-F
[17] DOI: 10.1080/08898489509525404 · Zbl 0876.92031 · doi:10.1080/08898489509525404
[18] Mittnik S., Broccoli: Time Series the Healthy Way Version 1.1 (1994)
[19] DOI: 10.1016/0169-2070(88)90015-5 · doi:10.1016/0169-2070(88)90015-5
[20] DOI: 10.1016/0169-2070(92)90051-A · doi:10.1016/0169-2070(92)90051-A
[21] DOI: 10.1080/08898489509525401 · Zbl 0873.92034 · doi:10.1080/08898489509525401
[22] DOI: 10.2307/2060440 · doi:10.2307/2060440
[23] DOI: 10.2307/2286787 · doi:10.2307/2286787
[24] Sanderson W. C., Population-Development Environment: Understanding Their Interactions in Mauritius pp 33– (1994) · doi:10.1007/978-3-662-03061-5_3
[25] Sanderson W. C., International Institute for Applied Systems Analysis Working Paper WP-94–75, in: Predictability, complexity, and catastrophe in a collapsible model of population, development, and environmental interactions (1994)
[26] DOI: 10.2307/1913828 · Zbl 0393.62025 · doi:10.2307/1913828
[27] DOI: 10.2307/2287094 · doi:10.2307/2287094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.