×

An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. (English) Zbl 1434.65205

Summary: Adjoint methods applied to solve optimal control problems (OCPs) have a restriction that the number of constraints shall be less than that of optimization variables. Otherwise, they are less efficient than the forward methods. This paper proposes an efficient adjoint method to solve OCPs for index-\(1\) differential algebraic systems with continuous-time inequality constraints. The continuous-time inequality constraints are not discretized on time grid but transformed into integrals and penalized in the cost through an exact penalty function. Thus, all the constraints except for box constraints on optimization variables can be removed. Furthermore, a lifted implicit Runge-Kutta (IRK) integrator with adjoint sensitivity propagation is employed to accelerate the function and gradient evaluation procedure. Based on a sensitivity update technique, the number of Newton iterations involved in forward simulation can be reduced to one. Besides this, Lagrange interpolation is applied to approximate the states not on collocation points such that integrals in the penalty function can be evaluated on the same grid for forward simulation. Complexity analysis shows that, for the proposed algorithm, computation involved in the sensitivity propagation is comparable to that of forward one. Numerical simulations on the optimal maneuvering a Delta robot demonstrate that the computational speed of the proposed adjoint algorithm is comparable to that of our previous one, which is based on the lifted IRK integrator and forward sensitivity propagation.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
49M15 Newton-type methods
90C30 Nonlinear programming

Software:

Ipopt; SUNDIALS; ADOL-C; RODAS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. T. Biegler, Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, SIAM, Philadelphia, 2010. · Zbl 1207.90004
[2] A. Codourey, Dynamic modeling of parallel robots for computed-torque control implementation, The International Journal of Robotics Research, 17, 1325-1336 (1998) · doi:10.1177/027836499801701205
[3] Z. Gong; C. Liu; Y. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14, 183-198 (2018) · Zbl 1412.49011 · doi:10.3934/jimo.2017042
[4] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, no. 19 in Frontiers in Applied Mathematics., SIAM, Philadelphia, 2000. · Zbl 0958.65028
[5] E. Hairer and G. Wanner, Solving Ordinary Differential Equations: II Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, Heidelberg, 1991. · Zbl 0729.65051
[6] A. C. Hindmarsh; P. N. Brown; K. E. Grant; S. L. Lee; R. Serban; D. E. Shumaker; C. S. Woodward, SUNDIALS, suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software, 31, 363-396 (2005) · Zbl 1136.65329 · doi:10.1145/1089014.1089020
[7] W. Huyer and A. Neumaier, A new exact penalty function, SIAM Journal on Optimization, 13 (2003), 1141-1158. · Zbl 1101.90070
[8] C. Jiang; Q. Lin; C. Yu; K. L. Teo; G.-R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints, Journal of Optimization Theory and Applications, 154, 30-53 (2012) · Zbl 1264.49036 · doi:10.1007/s10957-012-0006-9
[9] C. Jiang, K. Xie, Z. Guo and K. L. Teo, Implicit integration with adjoint sensitivity propagation for optimal control problems involving differential-algebraic equations, in Proceedings of the 36th Chinese Control Conference, IEEE Computer Society, Dalian, 2017, 2489-2494.
[10] C. Jiang; K. Xie; C. Yu; M. Yu; H. Wang; Y. He; K. L. Teo, A sequential computational approach to optimal control problems for differential-algebraic systems based on efficient implicit Runge-Kutta integration, Applied Mathematical Modelling, 58, 313-330 (2018) · Zbl 1480.49031 · doi:10.1016/j.apm.2017.05.015
[11] B. Li; C. Xu; K. L. Teo; J. Chu, Time optimal Zermelo’s navigation problem with moving and fixed obstacles, Applied Mathematics and Computation, 224, 866-875 (2013) · Zbl 1337.49071 · doi:10.1016/j.amc.2013.08.092
[12] B. Li; C. J. Yu; K. L. Teo; G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151, 260-291 (2011) · Zbl 1251.49026 · doi:10.1007/s10957-011-9904-5
[13] Q. Lin; R. Loxton; K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and management optimization, 10, 275-309 (2014) · Zbl 1276.49025 · doi:10.3934/jimo.2014.10.275
[14] Q. Lin; R. Loxton; K. L. Teo; Y. H. Wu; C. Yu, A new exact penalty method for semi-infinite programming problems, Journal of Computational and Applied Mathematics, 261, 271-286 (2014) · Zbl 1278.90410 · doi:10.1016/j.cam.2013.11.010
[15] R. Loxton; Q. Lin; K. L. Teo, Switching time optimization for nonlinear switched systems: Direct optimization and the time-scaling transformation, Pacific Journal of Optimization, 10, 537-560 (2014) · Zbl 1305.49042
[16] C. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM Journal on Scientific and Statistical Computing, 9, 213-231 (1988) · Zbl 0643.65039 · doi:10.1137/0909014
[17] R. Pytlak, Runge-Kutta based procedure for the optimal control of differential-algebraic equations, Journal of Optimization Theory and Applications, 97, 675-705 (1998) · Zbl 0908.49003 · doi:10.1023/A:1022698311155
[18] R. Pytlak; T. Zawadzki, On solving optimal control problems with higher index DAEs, Optimization Methods & Software, 29, 1139-1162 (2014) · Zbl 1301.49077 · doi:10.1080/10556788.2014.892597
[19] R. Quirynen, S. Gros and M. Diehl, Fast auto generated ACADO integrators and application to MHE with multi-rate measurements, in Proceedings of the 2013 European Control Conference, Zurich, Switzerland, 2013, 3077-3082.
[20] R. Quirynen, S. Gros and M. Diehl, Inexact Newton based lifted implicit integrators for fast nonlinear MPC, in Proceedings of the 5th IFAC Nonlinear Model Predictive Control Conference, 48 (2015), 32-38.
[21] R. Quirynen, S. Gros and M. Diehl, Lifted implicit integrators for direct optimal control, in Proceedings of 2015 IEEE 54th Annual Conference on Decision and Control, 2015, 3212-3217.
[22] A. Rao, A survey of numerical methods for optimal control, in Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, USA, 2009, 1-32.
[23] I. M. Ross; F. Fahroo, Issues in the real-time computation of optimal control, Mathematical and Computer Modelling, 43, 1172-1188 (2006) · Zbl 1139.49031 · doi:10.1016/j.mcm.2005.05.021
[24] J. M. Sanz-Serna, Symplectic Runge-Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more, SIAM Review, 58, 3-33 (2016) · Zbl 1339.65243 · doi:10.1137/151002769
[25] A. Wächter; L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, Ser. A, 106, 25-57 (2006) · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[26] A. Walther and A. Griewank, Combinatorial Scientific Computing, chapter Getting started with ADOL-C, 181-202, Chapman-Hall CRC Computational Science, 2012.
[27] C. Yu; K. L. Teo; L. Zhang; Y. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6, 895-910 (2010) · Zbl 1203.90010 · doi:10.3934/jimo.2010.6.895
[28] C. Yu; K. L. Teo; L. Zhang; Y. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial and Management Optimization, 8, 485-491 (2012) · Zbl 1364.90015 · doi:10.3934/jimo.2012.8.485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.