Hendy, Ahmed S.; Pimenov, Vladimir G.; Macías-Díaz, Jorge E. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay. (English) Zbl 1452.65159 Numer. Methods Partial Differ. Equations 36, No. 1, 118-132 (2020). MSC: 65M06 65M15 65M12 35K10 26A33 35R11 35R07 PDF BibTeX XML Cite \textit{A. S. Hendy} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 118--132 (2020; Zbl 1452.65159) Full Text: DOI
Liu, Xiaohua; Deng, Feiqi; Liu, Linna; Luo, Shixian; Zhao, Xueyan Mean-square stability of two classes of \(\theta \)-methods for neutral stochastic delay integro-differential equations. (English) Zbl 1450.65003 Appl. Math. Lett. 109, Article ID 106544, 7 p. (2020). MSC: 65C30 60H35 35R11 60G22 60H15 PDF BibTeX XML Cite \textit{X. Liu} et al., Appl. Math. Lett. 109, Article ID 106544, 7 p. (2020; Zbl 1450.65003) Full Text: DOI
Singh, Brajesh Kumar; Agrawal, Saloni A new approximation of conformable time fractional partial differential equations with proportional delay. (English) Zbl 1446.65139 Appl. Numer. Math. 157, 419-433 (2020). MSC: 65M99 65M15 35R11 26A33 65M70 35R10 35R07 35Q53 PDF BibTeX XML Cite \textit{B. K. Singh} and \textit{S. Agrawal}, Appl. Numer. Math. 157, 419--433 (2020; Zbl 1446.65139) Full Text: DOI
Rakhshan, Seyed Ali; Effati, Sohrab Fractional optimal control problems with time-varying delay: a new delay fractional Euler-Lagrange equations. (English) Zbl 1441.93127 J. Franklin Inst. 357, No. 10, 5954-5988 (2020). MSC: 93C20 35R11 49J20 93C43 PDF BibTeX XML Cite \textit{S. A. Rakhshan} and \textit{S. Effati}, J. Franklin Inst. 357, No. 10, 5954--5988 (2020; Zbl 1441.93127) Full Text: DOI
Sweilam, Nasser; Al-Mekhlafi, Seham; Shatta, Salma; Baleanu, Dumitru Numerical study for two types variable-order Burgers’ equations with proportional delay. (English) Zbl 1442.65181 Appl. Numer. Math. 156, 364-376 (2020). MSC: 65M06 65M12 65M15 26A33 35R11 35R07 35Q53 PDF BibTeX XML Cite \textit{N. Sweilam} et al., Appl. Numer. Math. 156, 364--376 (2020; Zbl 1442.65181) Full Text: DOI
Ducrot, Arnaud; Genadot, Alexandre Self-similar behavior of a nonlocal diffusion equation with time delay. (English) Zbl 1442.35493 SIAM J. Math. Anal. 52, No. 3, 2275-2312 (2020). MSC: 35R09 35C06 39A14 46N20 60F05 PDF BibTeX XML Cite \textit{A. Ducrot} and \textit{A. Genadot}, SIAM J. Math. Anal. 52, No. 3, 2275--2312 (2020; Zbl 1442.35493) Full Text: DOI
Zeid, Samaneh Soradi Approximation methods for solving fractional equations. (English) Zbl 1448.65059 Chaos Solitons Fractals 125, 171-193 (2019). MSC: 65L03 65M06 65-02 35R11 34K37 45J05 PDF BibTeX XML Cite \textit{S. S. Zeid}, Chaos Solitons Fractals 125, 171--193 (2019; Zbl 1448.65059) Full Text: DOI
Zhang, Qifeng; Li, Tingyue Asymptotic stability of compact and linear \(\theta \)-methods for space fractional delay generalized diffusion equation. (English) Zbl 1433.65172 J. Sci. Comput. 81, No. 3, 2413-2446 (2019). MSC: 65M06 65M15 65M12 35B40 35R11 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{T. Li}, J. Sci. Comput. 81, No. 3, 2413--2446 (2019; Zbl 1433.65172) Full Text: DOI
Zarubin, Aleksandr N. Boundary value problem for a mixed functionally differential advancing-lagging equation with fractional derivative. (English. Russian original) Zbl 1429.35207 Russ. Math. 63, No. 4, 44-56 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 52-65 (2019). MSC: 35R11 35R10 35K55 PDF BibTeX XML Cite \textit{A. N. Zarubin}, Russ. Math. 63, No. 4, 44--56 (2019; Zbl 1429.35207); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 52--65 (2019) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay. (English) Zbl 07144924 Numer. Linear Algebra Appl. 26, No. 5, e2259, 29 p. (2019). MSC: 65L20 65N12 65T60 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Numer. Linear Algebra Appl. 26, No. 5, e2259, 29 p. (2019; Zbl 07144924) Full Text: DOI
Liu, Lu; Zhang, Shuo Fractional-order partial pole assignment for time-delay systems based on resonance and time response criteria analysis. (English) Zbl 1427.93076 J. Franklin Inst. 356, No. 18, 11434-11455 (2019). MSC: 93B55 93C15 26A33 93C80 PDF BibTeX XML Cite \textit{L. Liu} and \textit{S. Zhang}, J. Franklin Inst. 356, No. 18, 11434--11455 (2019; Zbl 1427.93076) Full Text: DOI
Du, Mingjing; Qiao, Xiaohua; Wang, Biao; Wang, Yulan; Gao, Bo A novel method for numerical simulation of sand motion model in beach formation based on fractional Taylor-Jumarie series expansion and piecewise interpolation technique. (English) Zbl 1428.82082 Appl. Math. Comput. 347, 15-21 (2019). MSC: 82M99 82C22 35R11 PDF BibTeX XML Cite \textit{M. Du} et al., Appl. Math. Comput. 347, 15--21 (2019; Zbl 1428.82082) Full Text: DOI
Mohebbi, Akbar Finite difference and spectral collocation methods for the solution of semilinear time fractional convection-reaction-diffusion equations with time delay. (English) Zbl 1447.65102 J. Appl. Math. Comput. 61, No. 1-2, 635-656 (2019). Reviewer: Andreas Kleefeld (Jülich) MSC: 65M70 65M06 65N35 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{A. Mohebbi}, J. Appl. Math. Comput. 61, No. 1--2, 635--656 (2019; Zbl 1447.65102) Full Text: DOI
Nass, Aminu M. Symmetry analysis of space-time fractional Poisson equation with a delay. (English) Zbl 1428.35017 Quaest. Math. 42, No. 9, 1221-1235 (2019). MSC: 35B06 35R11 34A08 35C05 PDF BibTeX XML Cite \textit{A. M. Nass}, Quaest. Math. 42, No. 9, 1221--1235 (2019; Zbl 1428.35017) Full Text: DOI
Zhang, Xuping; Chen, Pengyu; Li, Yongxiang Fractional retarded differential equations involving mixed nonlocal plus local initial conditions. (English) Zbl 1429.34083 Numer. Funct. Anal. Optim. 40, No. 14, 1678-1702 (2019). MSC: 34K37 34K30 47D06 47N20 35R11 PDF BibTeX XML Cite \textit{X. Zhang} et al., Numer. Funct. Anal. Optim. 40, No. 14, 1678--1702 (2019; Zbl 1429.34083) Full Text: DOI
Wang, Zhiqiang; Wen, Liping; Zhu, Zhenmin Finite difference method for time delay diffusion-wave fractional differential equations. (Chinese. English summary) Zbl 1438.65196 Math. Numer. Sin. 41, No. 1, 82-90 (2019). MSC: 65M06 65M12 26A33 35R11 35R07 PDF BibTeX XML Cite \textit{Z. Wang} et al., Math. Numer. Sin. 41, No. 1, 82--90 (2019; Zbl 1438.65196)
Abbaszadeh, Mostafa; Dehghan, Mehdi Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method. (English) Zbl 1428.65073 Appl. Numer. Math. 145, 488-506 (2019). MSC: 65N30 65M06 65M12 35R11 35A01 35A02 65N12 35Q60 PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Appl. Numer. Math. 145, 488--506 (2019; Zbl 1428.65073) Full Text: DOI
Wang, Yejuan; Liang, Tongtong Mild solutions to the time fractional Navier-Stokes delay differential inclusions. (English) Zbl 1423.35420 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3713-3740 (2019). MSC: 35R11 33E12 34K37 35Q30 35B65 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{T. Liang}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3713--3740 (2019; Zbl 1423.35420) Full Text: DOI
Liu, Haiyu; Lü, Shujuan; Chen, Hu Spectral approximations for nonlinear fractional delay diffusion equations with smooth and nonsmooth solutions. (English) Zbl 1422.65163 Taiwanese J. Math. 23, No. 4, 981-1000 (2019). MSC: 65M06 65M12 65M70 35R11 PDF BibTeX XML Cite \textit{H. Liu} et al., Taiwanese J. Math. 23, No. 4, 981--1000 (2019; Zbl 1422.65163) Full Text: DOI Euclid
Qin, Yuming; Su, Keqin Upper estimates on Hausdorff and fractal dimensions of global attractors for the 2D Navier-Stokes-Voight equations with a distributed delay. (English) Zbl 1418.35311 Asymptotic Anal. 111, No. 3-4, 179-199 (2019). MSC: 35Q35 35B41 35R11 28A80 PDF BibTeX XML Cite \textit{Y. Qin} and \textit{K. Su}, Asymptotic Anal. 111, No. 3--4, 179--199 (2019; Zbl 1418.35311) Full Text: DOI
Saghali, Sahar; Javidi, Mohammad; Saei, Farhad Dastmalchi Analytical solution of a fractional differential equation in the theory of viscoelastic fluids. (English) Zbl 1419.35222 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 53, 13 p. (2019). MSC: 35R11 76A05 35Q35 PDF BibTeX XML Cite \textit{S. Saghali} et al., Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 53, 13 p. (2019; Zbl 1419.35222) Full Text: DOI
Allognissode, Fulbert Kuessi; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Ogouyandjou, Carlos Stochastic partial functional integrodifferential equations driven by a sub-fractional Brownian motion, existence and asymptotic behavior. (English) Zbl 1447.60088 Random Oper. Stoch. Equ. 27, No. 2, 107-122 (2019). MSC: 60H15 60G15 60G22 45K05 35R09 35R10 PDF BibTeX XML Cite \textit{F. K. Allognissode} et al., Random Oper. Stoch. Equ. 27, No. 2, 107--122 (2019; Zbl 1447.60088) Full Text: DOI
Zhou, Yong; Ahmad, Bashir; Chen, Fulai; Alsaedi, Ahmed Oscillation for fractional partial differential equations. (English) Zbl 1412.35375 Bull. Malays. Math. Sci. Soc. (2) 42, No. 2, 449-465 (2019). MSC: 35R11 35K20 44A10 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Bull. Malays. Math. Sci. Soc. (2) 42, No. 2, 449--465 (2019; Zbl 1412.35375) Full Text: DOI
Saeed, Amir; Saeed, Umer Generalized fractional order Chebyshev wavelets for solving nonlinear fractional delay-type equations. (English) Zbl 1417.65178 Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 3, Article ID 1950014, 19 p. (2019). MSC: 65M70 65L60 65N35 35R11 41A50 65T60 PDF BibTeX XML Cite \textit{A. Saeed} and \textit{U. Saeed}, Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 3, Article ID 1950014, 19 p. (2019; Zbl 1417.65178) Full Text: DOI
Yan, Zuomao; Han, Li Optimal mild solutions for a class of nonlocal multi-valued stochastic delay differential equations. (English) Zbl 1416.34063 J. Optim. Theory Appl. 181, No. 3, 1053-1075 (2019). MSC: 34K50 34K30 34A45 34K09 47N20 60H15 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{L. Han}, J. Optim. Theory Appl. 181, No. 3, 1053--1075 (2019; Zbl 1416.34063) Full Text: DOI
Li, Yajing; Wang, Yejuan The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay. (English) Zbl 1406.35469 J. Differ. Equations 266, No. 6, 3514-3558 (2019). MSC: 35R11 35R60 35A01 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Wang}, J. Differ. Equations 266, No. 6, 3514--3558 (2019; Zbl 1406.35469) Full Text: DOI
Ding, Xiao-Li; Jiang, Yao-Lin Analytical solutions for multi-term time-space coupling fractional delay partial differential equations with mixed boundary conditions. (English) Zbl 07263843 Commun. Nonlinear Sci. Numer. Simul. 65, 231-247 (2018). MSC: 00 PDF BibTeX XML Cite \textit{X.-L. Ding} and \textit{Y.-L. Jiang}, Commun. Nonlinear Sci. Numer. Simul. 65, 231--247 (2018; Zbl 07263843) Full Text: DOI
Zhang, Yuting; Yu, Yongguang; Cui, Xueli Dynamical behaviors analysis of memristor-based fractional-order complex-valued neural networks with time delay. (English) Zbl 1428.93082 Appl. Math. Comput. 339, 242-258 (2018). MSC: 93D09 35R11 92B20 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Appl. Math. Comput. 339, 242--258 (2018; Zbl 1428.93082) Full Text: DOI
Li, Lili; Zhou, Boya; Chen, Xiaoli; Wang, Zhiyong Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay. (English) Zbl 1427.65170 Appl. Math. Comput. 337, 144-152 (2018). MSC: 65M06 35B35 35K55 35R10 35R11 65M12 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Math. Comput. 337, 144--152 (2018; Zbl 1427.65170) Full Text: DOI
Zhao, Yong-Liang; Zhu, Peiyong; Luo, Weihua A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term. (English) Zbl 1427.65204 Appl. Math. Comput. 336, 231-248 (2018). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{Y.-L. Zhao} et al., Appl. Math. Comput. 336, 231--248 (2018; Zbl 1427.65204) Full Text: DOI
Xu, Liping; Li, Zhi Stochastic fractional evolution equations with fractional Brownian motion and infinite delay. (English) Zbl 1427.35342 Appl. Math. Comput. 336, 36-46 (2018). MSC: 35R11 35R60 60H15 60G15 60H05 PDF BibTeX XML Cite \textit{L. Xu} and \textit{Z. Li}, Appl. Math. Comput. 336, 36--46 (2018; Zbl 1427.35342) Full Text: DOI
Yan, Zuomao; Lu, Fangxia Existence of optimal mild solutions for multi-valued impulsive stochastic partial functional integrodifferential equations. (English) Zbl 1407.45008 Bull. Iran. Math. Soc. 44, No. 5, 1351-1386 (2018). MSC: 45K05 35A01 35R60 60H15 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{F. Lu}, Bull. Iran. Math. Soc. 44, No. 5, 1351--1386 (2018; Zbl 1407.45008) Full Text: DOI
Baleanu, Dumitru; Agheli, Bahram; Darzi, Rahmat An optimal method for approximating the delay differential equations of noninteger order. (English) Zbl 1446.35012 Adv. Difference Equ. 2018, Paper No. 284, 15 p. (2018). MSC: 35A35 35R11 26A33 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Adv. Difference Equ. 2018, Paper No. 284, 15 p. (2018; Zbl 1446.35012) Full Text: DOI
Leal, Claudio; Lizama, Carlos; Murillo-Arcila, Marina Lebesgue regularity for nonlocal time-discrete equations with delays. (English) Zbl 1404.39007 Fract. Calc. Appl. Anal. 21, No. 3, 696-715 (2018). MSC: 39A12 35R11 39A14 65Q10 39A06 PDF BibTeX XML Cite \textit{C. Leal} et al., Fract. Calc. Appl. Anal. 21, No. 3, 696--715 (2018; Zbl 1404.39007) Full Text: DOI
Hosseinpour, Soleiman; Nazemi, Alireza; Tohidi, Emran A new approach for solving a class of delay fractional partial differential equations. (English) Zbl 1407.65214 Mediterr. J. Math. 15, No. 6, Paper No. 218, 20 p. (2018). MSC: 65M70 35R11 44A10 42C10 65D32 33C45 PDF BibTeX XML Cite \textit{S. Hosseinpour} et al., Mediterr. J. Math. 15, No. 6, Paper No. 218, 20 p. (2018; Zbl 1407.65214) Full Text: DOI
Yu, Xinyi; Yang, Fan; Ou, Linlin; Wu, Qunhong; Zhang, Weidong General stabilization method of fractional-order \(\mathbf{PI}^\lambda \mathbf{D}^\mu\) controllers for fractional-order systems with time delay. (English) Zbl 1402.93223 Int. J. Robust Nonlinear Control 28, No. 16, 4999-5018 (2018). MSC: 93D21 93C20 35R11 PDF BibTeX XML Cite \textit{X. Yu} et al., Int. J. Robust Nonlinear Control 28, No. 16, 4999--5018 (2018; Zbl 1402.93223) Full Text: DOI
Pei, Bin; Xu, Yong; Yin, George Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale Markov switching processes. (English) Zbl 1394.60036 Stoch. Dyn. 18, No. 4, Article ID 1850023, 19 p. (2018). MSC: 60G22 60H15 PDF BibTeX XML Cite \textit{B. Pei} et al., Stoch. Dyn. 18, No. 4, Article ID 1850023, 19 p. (2018; Zbl 1394.60036) Full Text: DOI
Yan, Zuomao; Jia, Xiumei Optimal controls for fractional stochastic functional differential equations of order \(\alpha \in (1, 2]\). (English) Zbl 1395.49021 Bull. Malays. Math. Sci. Soc. (2) 41, No. 3, 1581-1606 (2018). MSC: 49K45 34K05 60H15 34G20 26A33 93E20 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Jia}, Bull. Malays. Math. Sci. Soc. (2) 41, No. 3, 1581--1606 (2018; Zbl 1395.49021) Full Text: DOI
Dehghan, Mehdi; Abbaszadeh, Mostafa A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. (English) Zbl 1395.65098 Math. Methods Appl. Sci. 41, No. 9, 3476-3494 (2018). MSC: 65M70 65M06 65M12 65M60 35R11 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Abbaszadeh}, Math. Methods Appl. Sci. 41, No. 9, 3476--3494 (2018; Zbl 1395.65098) Full Text: DOI
Pimenov, V. G. Numerical method for fractional advection-diffusion equation with heredity. (English. Russian original) Zbl 1395.65053 J. Math. Sci., New York 230, No. 5, 737-741 (2018); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 132 (2016). MSC: 65M12 35R11 65D05 65M06 26A33 PDF BibTeX XML Full Text: DOI
Valliammal, N.; Ravichandran, C. Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces. (English) Zbl 06888515 Nonlinear Stud. 25, No. 1, 159-171 (2018). MSC: 47D06 47H10 34K30 35R10 PDF BibTeX XML Cite \textit{N. Valliammal} and \textit{C. Ravichandran}, Nonlinear Stud. 25, No. 1, 159--171 (2018; Zbl 06888515) Full Text: Link
Lizama, Carlos; Murillo-Arcila, Marina; Leal, Claudio Lebesgue regularity for differential difference equations with fractional damping. (English) Zbl 1391.35405 Math. Methods Appl. Sci. 41, No. 7, 2535-2545 (2018). MSC: 35R20 35R11 39A14 PDF BibTeX XML Cite \textit{C. Lizama} et al., Math. Methods Appl. Sci. 41, No. 7, 2535--2545 (2018; Zbl 1391.35405) Full Text: DOI
Singh, Brajesh Kumar; Kumar, Pramod Homotopy perturbation transform method for solving fractional partial differential equations with proportional delay. (English) Zbl 06859008 S\(\vec{\text{e}}\)MA J. 75, No. 1, 111-125 (2018). MSC: 65M99 65M12 35R11 65H20 44A10 35Q53 PDF BibTeX XML Cite \textit{B. K. Singh} and \textit{P. Kumar}, S\(\vec{\text{e}}\)MA J. 75, No. 1, 111--125 (2018; Zbl 06859008) Full Text: DOI
Boudaoui, A.; Lakhel, E. Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay. (English) Zbl 1387.35598 Differ. Equ. Dyn. Syst. 26, No. 1-3, 247-263 (2018). MSC: 35R10 93B05 60G22 60H20 PDF BibTeX XML Cite \textit{A. Boudaoui} and \textit{E. Lakhel}, Differ. Equ. Dyn. Syst. 26, No. 1--3, 247--263 (2018; Zbl 1387.35598) Full Text: DOI
Stamova, Ivanka; Stamov, Gani Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. (English) Zbl 1441.93106 Neural Netw. 96, 22-32 (2017). MSC: 93B70 93C43 93C20 35R11 93C27 93C05 PDF BibTeX XML Cite \textit{I. Stamova} and \textit{G. Stamov}, Neural Netw. 96, 22--32 (2017; Zbl 1441.93106) Full Text: DOI
Yan, Zuomao; Jia, Xiumei Approximate controllability of impulsive fractional stochastic partial neutral integrodifferential inclusions with infinite delay. (English) Zbl 1417.93081 IMA J. Math. Control Inf. 34, No. 3, 779-820 (2017). MSC: 93B05 93C20 26A33 60H15 93C25 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Jia}, IMA J. Math. Control Inf. 34, No. 3, 779--820 (2017; Zbl 1417.93081) Full Text: DOI
Yan, Zuomao; Lu, Fangxia Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay. (English) Zbl 1410.93026 Appl. Math. Comput. 292, 425-447 (2017). MSC: 93B05 35R11 45K05 60H15 93C25 93E03 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{F. Lu}, Appl. Math. Comput. 292, 425--447 (2017; Zbl 1410.93026) Full Text: DOI
Bahaa, G. Mohamed Fractional optimal control problem for differential system with delay argument. (English) Zbl 1422.49003 Adv. Difference Equ. 2017, Paper No. 69, 19 p. (2017). MSC: 49J20 49K20 93C20 26A33 PDF BibTeX XML Cite \textit{G. M. Bahaa}, Adv. Difference Equ. 2017, Paper No. 69, 19 p. (2017; Zbl 1422.49003) Full Text: DOI
Yan, Zuomao; Lu, Fangxia Complete controllability of fractional impulsive multivalued stochastic partial integrodifferential equations with state-dependent delay. (English) Zbl 1401.93040 Int. J. Nonlinear Sci. Numer. Simul. 18, No. 3-4, 197-220 (2017). MSC: 93B05 34A08 34K30 34K45 35R60 60H15 93C25 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{F. Lu}, Int. J. Nonlinear Sci. Numer. Simul. 18, No. 3--4, 197--220 (2017; Zbl 1401.93040) Full Text: DOI
Xiong, Yongfu; Zhu, Siying; Liu, Anping On the forced oscillation of fractional delay partial differential equations. (English) Zbl 1399.35024 J. Biomath. 32, No. 3, 304-310 (2017). MSC: 35B05 35R11 PDF BibTeX XML Cite \textit{Y. Xiong} et al., J. Biomath. 32, No. 3, 304--310 (2017; Zbl 1399.35024)
Mallika, Duraisamy; Suganya, Selvaraj; Baleanu, Dumitru; Arjunan, Mani Mallika A note on Sobolev form fractional integro-differential equation with state-dependent delay via resolvent operators. (English) Zbl 1386.34128 Nonlinear Stud. 24, No. 3, 553-573 (2017). MSC: 34K30 26A33 35R10 47D06 PDF BibTeX XML Cite \textit{D. Mallika} et al., Nonlinear Stud. 24, No. 3, 553--573 (2017; Zbl 1386.34128) Full Text: Link
Lakhel, El Hassan Controllability of neutral functional differential equations driven by fractional Brownian motion with infinite delay. (English) Zbl 1377.35256 Nonlinear Dyn. Syst. Theory 17, No. 3, 291-302 (2017). MSC: 35R10 93B05 60G22 60H20 PDF BibTeX XML Cite \textit{E. H. Lakhel}, Nonlinear Dyn. Syst. Theory 17, No. 3, 291--302 (2017; Zbl 1377.35256)
Kailasavalli, S.; Suganya, S.; Mallika Arjunan, M. On fractional neutral integro-differential systems with state-dependent delay in Banach spaces. (English) Zbl 1375.35605 Fundam. Inform. 151, No. 1-4, 109-133 (2017). MSC: 35R11 45J05 PDF BibTeX XML Cite \textit{S. Kailasavalli} et al., Fundam. Inform. 151, No. 1--4, 109--133 (2017; Zbl 1375.35605) Full Text: DOI
Pimenov, Vladimir G.; Hendy, Ahmed S. A numerical solution for a class of time fractional diffusion equations with delay. (English) Zbl 1373.35334 Int. J. Appl. Math. Comput. Sci. 27, No. 3, 477-488 (2017). MSC: 35R11 65M06 PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{A. S. Hendy}, Int. J. Appl. Math. Comput. Sci. 27, No. 3, 477--488 (2017; Zbl 1373.35334) Full Text: DOI
Gu, Wei; Zhou, Yanli; Ge, Xiangyu A compact difference scheme for solving fractional neutral parabolic differential equation with proportional delay. (English) Zbl 1376.65114 J. Funct. Spaces 2017, Article ID 3679526, 8 p. (2017). MSC: 65M06 35K55 35R11 35K20 35R10 65M12 PDF BibTeX XML Cite \textit{W. Gu} et al., J. Funct. Spaces 2017, Article ID 3679526, 8 p. (2017; Zbl 1376.65114) Full Text: DOI
Kumar, Surendra Mild solution and fractional optimal control of semilinear system with fixed delay. (English) Zbl 1432.49032 J. Optim. Theory Appl. 174, No. 1, 108-121 (2017). MSC: 49K20 34A08 93C23 49J99 PDF BibTeX XML Cite \textit{S. Kumar}, J. Optim. Theory Appl. 174, No. 1, 108--121 (2017; Zbl 1432.49032) Full Text: DOI
Li, Wensheng; Han, Huirong; Zhou, Qian Existence results of multi-valued abstract integro-differential equations with state-dependent delay via fractional operators. (Chinese. English summary) Zbl 1389.35304 J. Math., Wuhan Univ. 37, No. 2, 347-357 (2017). MSC: 35R09 35R10 35R11 PDF BibTeX XML Cite \textit{W. Li} et al., J. Math., Wuhan Univ. 37, No. 2, 347--357 (2017; Zbl 1389.35304)
Zhang, Qifeng; Ran, Maohua; Xu, Dinghua Analysis of the compact difference scheme for the semilinear fractional partial differential equation with time delay. (English) Zbl 1373.65061 Appl. Anal. 96, No. 11, 1867-1884 (2017). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 35R11 35K58 35R10 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Appl. Anal. 96, No. 11, 1867--1884 (2017; Zbl 1373.65061) Full Text: DOI
Pimenov, Vladimir; Hendy, Ahmed Numerical methods for a class of fractional advection-diffusion models with functional delay. (English) Zbl 1368.65145 Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 533-541 (2017). MSC: 65M06 35K20 35R11 65M12 PDF BibTeX XML Cite \textit{V. Pimenov} and \textit{A. Hendy}, Lect. Notes Comput. Sci. 10187, 533--541 (2017; Zbl 1368.65145) Full Text: DOI
Suganya, Selvaraj; Arjunan, Mani Mallika Existence of mild solutions for impulsive fractional integro-differential inclusions with state-dependent delay. (English) Zbl 1365.34020 Mathematics 5, No. 1, Article ID 9, 16 p. (2017). MSC: 34A08 35R12 34A60 34G20 34K05 45J05 PDF BibTeX XML Cite \textit{S. Suganya} and \textit{M. M. Arjunan}, Mathematics 5, No. 1, Article ID 9, 16 p. (2017; Zbl 1365.34020) Full Text: DOI
Pimenov, V. G.; Hendy, A. S.; De Staelen, R. H. On a class of non-linear delay distributed order fractional diffusion equations. (English) Zbl 1357.65127 J. Comput. Appl. Math. 318, 433-443 (2017). MSC: 65M06 35K55 35R11 35R10 65M12 PDF BibTeX XML Cite \textit{V. G. Pimenov} et al., J. Comput. Appl. Math. 318, 433--443 (2017; Zbl 1357.65127) Full Text: DOI
Hao, Zhaopeng; Fan, Kai; Cao, Wanrong; Sun, Zhizhong A finite difference scheme for semilinear space-fractional diffusion equations with time delay. (English) Zbl 1410.65310 Appl. Math. Comput. 275, 238-254 (2016). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{Z. Hao} et al., Appl. Math. Comput. 275, 238--254 (2016; Zbl 1410.65310) Full Text: DOI
Pimenov, Vladimir G.; Hendy, Ahmed S. Fractional analog of Crank-Nicholson method for the two sided space fractional partial equation with functional delay. (English) Zbl 1398.65217 Ural Math. J. 2, No. 1, 48-57 (2016). MSC: 65M06 35R10 65M12 PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{A. S. Hendy}, Ural Math. J. 2, No. 1, 48--57 (2016; Zbl 1398.65217) Full Text: DOI MNR
Li, Zhi; Xu, Liping; Li, Xiong On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays. (English) Zbl 1373.60112 Bull. Iran. Math. Soc. 42, No. 6, 1479-1496 (2016). MSC: 60H15 60G22 PDF BibTeX XML Cite \textit{Z. Li} et al., Bull. Iran. Math. Soc. 42, No. 6, 1479--1496 (2016; Zbl 1373.60112) Full Text: Link
Kailasavalli, S.; Baleanu, D.; Suganya, S.; Arjunan, Mallika M. Exact controllability of fractional neutral integro-differential systems with state-dependent delay in Banach spaces. (English) Zbl 1389.93041 An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat. 24, No. 1, 29-55 (2016). MSC: 93B05 34K30 26A33 35R10 47H09 47D06 PDF BibTeX XML Cite \textit{S. Kailasavalli} et al., An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 24, No. 1, 29--55 (2016; Zbl 1389.93041) Full Text: DOI
Zhang, Yanmin; Liu, Mingding A numerical method for solving certain fractional diffusion differential equations with delay. (Chinese. English summary) Zbl 1374.65146 J. Qufu Norm. Univ., Nat. Sci. 42, No. 4, 1-4 (2016). MSC: 65M06 65M12 35R10 35R11 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{M. Liu}, J. Qufu Norm. Univ., Nat. Sci. 42, No. 4, 1--4 (2016; Zbl 1374.65146) Full Text: DOI
Suganya, S.; Mallika Arjunan, M. On exact controllability of neutral integro-differential systems of fractional order with state-dependent delay. (English) Zbl 1356.93015 Nonlinear Stud. 23, No. 4, 699-716 (2016). MSC: 93B05 93C25 93C15 26A33 34A08 35R12 34A60 34G20 34K05 45J05 PDF BibTeX XML Cite \textit{S. Suganya} and \textit{M. Mallika Arjunan}, Nonlinear Stud. 23, No. 4, 699--716 (2016; Zbl 1356.93015) Full Text: Link
Yan, Zuomao Approximate controllability of fractional impulsive partial neutral stochastic differential inclusions with state-dependent delay and fractional sectorial operators. (English) Zbl 1359.34086 Numer. Funct. Anal. Optim. 37, No. 12, 1590-1639 (2016). MSC: 34K35 34K30 34K37 34K40 34K50 34K09 93B05 PDF BibTeX XML Cite \textit{Z. Yan}, Numer. Funct. Anal. Optim. 37, No. 12, 1590--1639 (2016; Zbl 1359.34086) Full Text: DOI
Yan, Zuomao; Jia, Xiumei On a fractional impulsive partial stochastic integro-differential equation with state-dependent delay and optimal controls. (English) Zbl 1354.34133 Stochastics 88, No. 8, 1115-1146 (2016). MSC: 34K50 34K30 34K37 34K45 60H10 49J27 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Jia}, Stochastics 88, No. 8, 1115--1146 (2016; Zbl 1354.34133) Full Text: DOI
Bulavatsky, V. M.; Bogaenko, V. A. Mathematical modeling of the dynamics of nonequilibrium in time convection-diffusion processes in domains with free boundaries. (English. Russian original) Zbl 1348.93026 Cybern. Syst. Anal. 52, No. 3, 427-440 (2016); translation from Kibern. Sist. Anal. 2016, No. 3, 106-121 (2016). MSC: 93A30 35R11 65M06 PDF BibTeX XML Cite \textit{V. M. Bulavatsky} and \textit{V. A. Bogaenko}, Cybern. Syst. Anal. 52, No. 3, 427--440 (2016; Zbl 1348.93026); translation from Kibern. Sist. Anal. 2016, No. 3, 106--121 (2016) Full Text: DOI
Yan, Zuomao On a new class of impulsive stochastic partial neutral integro-differential equations. (English) Zbl 1350.34060 Appl. Anal. 95, No. 9, 1891-1918 (2016). MSC: 34K30 34K40 60H15 34K45 47N20 PDF BibTeX XML Cite \textit{Z. Yan}, Appl. Anal. 95, No. 9, 1891--1918 (2016; Zbl 1350.34060) Full Text: DOI
Kailasavalli, Subramanian; Suganya, Selvaraj; Arjunan, Mani Mallika Existence and controllability of fractional neutral integro-differential systems with state-dependent delay in Banach spaces. (English) Zbl 1336.93032 J. Korean Soc. Ind. Appl. Math. 20, No. 1, 51-82 (2016). MSC: 93B05 34K37 34A08 45K05 47D06 PDF BibTeX XML Cite \textit{S. Kailasavalli} et al., J. Korean Soc. Ind. Appl. Math. 20, No. 1, 51--82 (2016; Zbl 1336.93032) Full Text: DOI Link
Fu, Xianlong; Zhang, Jialin Approximate controllability of neutral functional differential systems with state-dependent delay. (English) Zbl 1406.93056 Chin. Ann. Math., Ser. B 37, No. 2, 291-308 (2016). MSC: 93B05 93C23 93C25 93C15 34K30 34K35 35R10 PDF BibTeX XML Cite \textit{X. Fu} and \textit{J. Zhang}, Chin. Ann. Math., Ser. B 37, No. 2, 291--308 (2016; Zbl 1406.93056) Full Text: DOI
Xue, Dingyü; Chen, YangQuan Scientific computing with MATLAB. 2nd edition. (English) Zbl 1344.65001 Boca Raton, FL: CRC Press (ISBN 978-1-4987-5777-5/hbk; 978-1-4987-5781-2/ebook). xvii, 586 p. (2016). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65-01 00A06 68-04 68N15 68W30 65Mxx 65Nxx 65Fxx 65R10 65E05 65H05 65K05 65Lxx 65Dxx 65Cxx 65T60 PDF BibTeX XML Cite \textit{D. Xue} and \textit{Y. Chen}, Scientific computing with MATLAB. 2nd edition. Boca Raton, FL: CRC Press (2016; Zbl 1344.65001)
Yan, Zuomao; Lu, Fangxia Existence results for a new class of fractional impulsive partial neutral stochastic integro-differential equations with infinite delay. (English) Zbl 1451.34100 J. Appl. Anal. Comput. 5, No. 3, 329-346 (2015). MSC: 34K30 34K37 34K40 34K45 34K50 47N20 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{F. Lu}, J. Appl. Anal. Comput. 5, No. 3, 329--346 (2015; Zbl 1451.34100) Full Text: DOI
Suganya, S.; Mallika Arjunan, M.; Trujillo, J. J. Existence results for an impulsive fractional integro-differential equation with state-dependent delay. (English) Zbl 1410.34242 Appl. Math. Comput. 266, 54-69 (2015). MSC: 34K45 34A08 34K37 35R11 35R12 45J05 PDF BibTeX XML Cite \textit{S. Suganya} et al., Appl. Math. Comput. 266, 54--69 (2015; Zbl 1410.34242) Full Text: DOI
Yan, Zuomao; Jia, Xiumei Approximate controllability of fractional impulsive partial neutral integrodifferential inclusions with infinite delay in Hilbert spaces. (English) Zbl 1422.34095 Adv. Difference Equ. 2015, Paper No. 130, 31 p. (2015). MSC: 34A37 34A08 34K09 93B05 26A33 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Jia}, Adv. Difference Equ. 2015, Paper No. 130, 31 p. (2015; Zbl 1422.34095) Full Text: DOI
Ait Ouali, N.; Kandouci, A. An existence result for mild solutions to fractional order neutral stochastic integrodifferential equations with infinite delay. (English) Zbl 1360.60117 J. Numer. Math. Stoch. 7, No. 1, 30-47 (2015). MSC: 60H15 34K40 34K50 60G22 PDF BibTeX XML Cite \textit{N. Ait Ouali} and \textit{A. Kandouci}, J. Numer. Math. Stoch. 7, No. 1, 30--47 (2015; Zbl 1360.60117) Full Text: Link
Li, Zhi; Zhou, Guoli; Luo, Jiaowan Stochastic delay evolution equations driven by sub-fractional Brownian motion. (English) Zbl 1343.60086 Adv. Difference Equ. 2015, Paper No. 48, 17 p. (2015). MSC: 60H15 60G15 60H05 PDF BibTeX XML Cite \textit{Z. Li} et al., Adv. Difference Equ. 2015, Paper No. 48, 17 p. (2015; Zbl 1343.60086) Full Text: DOI
Han, Yinghao; Cheng, Jinhui; Liu, Tuo; Hu, Xiaoxue Asymptotic behavior of stochastic partial functional differential equations driven by fractional Brownian motion. (Chinese. English summary) Zbl 1349.35389 J. Liaoning Norm. Univ., Nat. Sci. 38, No. 4, 452-459 (2015). MSC: 35R10 35R60 35B40 60H15 PDF BibTeX XML Cite \textit{Y. Han} et al., J. Liaoning Norm. Univ., Nat. Sci. 38, No. 4, 452--459 (2015; Zbl 1349.35389) Full Text: DOI
Hendy, A. S. A linearized difference scheme for a class of fractional partial differential equations with delay. (English) Zbl 1382.65244 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 2015, No. 2(46), 236-242 (2015). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{A. S. Hendy}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 2015, No. 2(46), 236--242 (2015; Zbl 1382.65244) Full Text: MNR
Kailasavalli, S.; Suganya, S.; Arjunan, M. Mallika Exact controllability of fractional neutral integro-differential systems with state-dependent delay. (English) Zbl 1330.93035 Nonlinear Stud. 22, No. 4, 687-704 (2015). MSC: 93B05 93C25 47H09 34K30 26A33 35R10 47D06 47N10 PDF BibTeX XML Cite \textit{S. Kailasavalli} et al., Nonlinear Stud. 22, No. 4, 687--704 (2015; Zbl 1330.93035) Full Text: Link
McKibben, Mark A.; Webster, Micah Abstract stochastic integrodifferential delay equations driven by fractional Brownian motion. (English) Zbl 1331.60122 Far East J. Math. Sci. (FJMS) 96, No. 6, 757-800 (2015). MSC: 60H15 60H20 60G22 60H05 60H35 35R60 35R09 65C30 PDF BibTeX XML Cite \textit{M. A. McKibben} and \textit{M. Webster}, Far East J. Math. Sci. (FJMS) 96, No. 6, 757--800 (2015; Zbl 1331.60122) Full Text: DOI Link
Yan, Zuomao; Lu, Fangxia Existence of an optimal control for fractional stochastic partial neutral integro-differential equations with infinite delay. (English) Zbl 1328.49017 J. Nonlinear Sci. Appl. 8, No. 5, 557-577 (2015). MSC: 49J55 93E20 49J21 60H15 60H20 26A33 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{F. Lu}, J. Nonlinear Sci. Appl. 8, No. 5, 557--577 (2015; Zbl 1328.49017) Full Text: DOI Link
Li, Zhi; Luo, Jiaowan Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion. (English) Zbl 1328.60150 Front. Math. China 10, No. 2, 303-321 (2015). MSC: 60H15 60G22 PDF BibTeX XML Cite \textit{Z. Li} and \textit{J. Luo}, Front. Math. China 10, No. 2, 303--321 (2015; Zbl 1328.60150) Full Text: DOI
Li, Kexue Stochastic delay fractional evolution equations driven by fractional Brownian motion. (English) Zbl 1356.60103 Math. Methods Appl. Sci. 38, No. 8, 1582-1591 (2015). Reviewer: Wanyang Dai (Nanjing) MSC: 60H15 60H10 60G22 34K50 26A33 PDF BibTeX XML Cite \textit{K. Li}, Math. Methods Appl. Sci. 38, No. 8, 1582--1591 (2015; Zbl 1356.60103) Full Text: DOI arXiv
Abbas, Saïd; Albarakati, Wafaa A.; Benchohra, Mouffak; Darwish, Mohamed Abdalla; Hilal, Eman M. New existence and stability results for partial fractional differential inclusions with multiple delay. (English) Zbl 1325.35254 Ann. Pol. Math. 114, No. 1, 81-100 (2015). MSC: 35R11 35R70 26A33 35A01 35B35 PDF BibTeX XML Cite \textit{S. Abbas} et al., Ann. Pol. Math. 114, No. 1, 81--100 (2015; Zbl 1325.35254) Full Text: DOI
Zhou, Jiaxing; Yin, Hongwei Fractional evolution equations with infinite delay under Carathéodory conditions. (English) Zbl 1417.35226 Adv. Difference Equ. 2014, Paper No. 216, 9 p. (2014). MSC: 35R11 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{H. Yin}, Adv. Difference Equ. 2014, Paper No. 216, 9 p. (2014; Zbl 1417.35226) Full Text: DOI
Benchohra, Mouffak; Boutefal, Zohra Impulsive hyperbolic system of partial differential equations of fractional order with delay. (English) Zbl 1327.35422 Commentat. Math. 54, No. 2, 179-189 (2014). MSC: 35R12 26A33 35R11 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{Z. Boutefal}, Commentat. Math. 54, No. 2, 179--189 (2014; Zbl 1327.35422)
Zhang, Yanmin A numerical method for solving time fractional delay parabolic equation. (Chinese. English summary) Zbl 1313.65238 J. Guizhou Norm. Univ., Nat. Sci. 32, No. 3, 55-57 (2014). MSC: 65M06 65M12 35K20 35R11 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Guizhou Norm. Univ., Nat. Sci. 32, No. 3, 55--57 (2014; Zbl 1313.65238)
Guendouzi, Toufik; Mehdi, Khadem Almost periodic mild solutions for stochastic delay functional differential equations driven by a fractional Brownian motion. (English) Zbl 1313.60066 Rom. J. Math. Comput. Sci. 4, No. 1, 12-26 (2014). MSC: 60G15 60H10 60H15 PDF BibTeX XML Cite \textit{T. Guendouzi} and \textit{K. Mehdi}, Rom. J. Math. Comput. Sci. 4, No. 1, 12--26 (2014; Zbl 1313.60066)
Benchohra, Mouffak; Hellal, Mohamed Perturbed partial fractional order functional differential equations with infinite delay in Fréchet spaces. (English) Zbl 1336.35354 Nonlinear Dyn. Syst. Theory 14, No. 3, 244-257 (2014). MSC: 35R11 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{M. Hellal}, Nonlinear Dyn. Syst. Theory 14, No. 3, 244--257 (2014; Zbl 1336.35354)
Wang, R. N.; Xiang, Q. M.; Zhu, P. X. Existence and approximate controllability for systems governed by fractional delay evolution inclusions. (English) Zbl 1296.93029 Optimization 63, No. 8, 1191-1204 (2014). Reviewer: Jan Lovíšek (Bratislava) MSC: 93B05 35R11 34A09 35R70 26A33 PDF BibTeX XML Cite \textit{R. N. Wang} et al., Optimization 63, No. 8, 1191--1204 (2014; Zbl 1296.93029) Full Text: DOI
Yan, Zuomao; Jia, Xiumei Impulsive problems for fractional partial neutral functional integro-differential inclusions with infinite delay and analytic resolvent operators. (English) Zbl 1294.34071 Mediterr. J. Math. 11, No. 2, 393-428 (2014). MSC: 34K30 34K05 34K37 34A45 34K40 34K09 47N20 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Jia}, Mediterr. J. Math. 11, No. 2, 393--428 (2014; Zbl 1294.34071) Full Text: DOI
Benchohra, Mouffak; Hellal, Mohamed Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay. (English) Zbl 1301.35197 Ann. Pol. Math. 110, No. 3, 259-281 (2014). MSC: 35R10 35R11 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{M. Hellal}, Ann. Pol. Math. 110, No. 3, 259--281 (2014; Zbl 1301.35197) Full Text: DOI
Yan, Zuomao; Zhang, Hongwu Existence of solutions for impulsive fractional partial neutral integro-differential inclusions with state-dependent delay in Banach spaces. (English) Zbl 1382.34076 Ann. Pol. Math. 110, No. 2, 143-169 (2014). MSC: 34K30 34K09 34K45 34K37 35R12 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{H. Zhang}, Ann. Pol. Math. 110, No. 2, 143--169 (2014; Zbl 1382.34076) Full Text: DOI
Dabas, Jaydev; Chauhan, Archana Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay. (English) Zbl 1305.34132 Math. Comput. Modelling 57, No. 3-4, 754-763 (2013). MSC: 34K37 34A08 34K40 34K45 45J05 45K05 PDF BibTeX XML Cite \textit{J. Dabas} and \textit{A. Chauhan}, Math. Comput. Modelling 57, No. 3--4, 754--763 (2013; Zbl 1305.34132) Full Text: DOI
Vijayakumar, Velusamy; Ravichandran, C.; Murugesu, R. Approximate controllability for a class of fractional neutral integro-differential inclusions with state-dependent delay. (English) Zbl 1301.34100 Nonlinear Stud. 20, No. 4, 513-532 (2013). MSC: 34K35 34K30 35R10 47D06 34K37 34K40 34K09 93B05 PDF BibTeX XML Cite \textit{V. Vijayakumar} et al., Nonlinear Stud. 20, No. 4, 513--532 (2013; Zbl 1301.34100) Full Text: Link
Benchohra, Mouffak (ed.); Cabada, Alberto (ed.); Henderson, Johnny (ed.) Preface: Fractional differential equations and their applications. (English) Zbl 1298.00097 Nonlinear Stud. 20, No. 4, 469-470 (2013). MSC: 00B15 26-06 34-06 35-06 26A33 34A08 34A12 34B15 34K30 34K37 34K40 35R11 35C15 PDF BibTeX XML Cite \textit{M. Benchohra} (ed.) et al., Nonlinear Stud. 20, No. 4, 469--470 (2013; Zbl 1298.00097) Full Text: Link
Abbas, Saïd; Benchohra, Mouffak; Nieto, Juan J. Functional implicit hyperbolic fractional order differential equations with delay. (English) Zbl 1278.26007 Afr. Diaspora J. Math. 15, No. 1, 74-96 (2013). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{S. Abbas} et al., Afr. Diaspora J. Math. 15, No. 1, 74--96 (2013; Zbl 1278.26007) Full Text: Euclid