×

Comparison between coupled Euler/defect boundary-layer and Navier-Stokes computations for nonequilibrium hypersonic flows. (English) Zbl 0942.76033

From the summary: The coupled Euler/defect boundary-layer and full Navier-Stokes models for high enthalpy laminar viscous air flow past a blunt body have been numerically solved and compared. The air chemistry is modeled by five species with a 17-step chemical reaction scheme. The relaxation process for the vibrational energy mode storage of the \(\text{N}_2\) and \(\text{O}_2\) molecules is modeled via the Landau-Teller theory for V-T energy transfer. Particular attention is focused on the ability of the defect method to reproduce the dissipative flow properties obtained from the Navier-Stokes calculations more efficiently, i.e. utilizing less CPU time. We investigate two test cases of nonequilibrium hypersonic flows over axisymmetric blunt bodies with upstream Mach numbers 8.53 and 15.3. The effects of the two methods are emphasized through a code-to-code comparison, and a systematic comparison of the temperatures and mass fraction profiles along the body is performed.

MSC:

76K05 Hypersonic flows
76V05 Reaction effects in flows
76M20 Finite difference methods applied to problems in fluid mechanics
92E20 Classical flows, reactions, etc. in chemistry
80A32 Chemically reacting flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wüthrich, S.; Sawley, M. L., Coupled Euler/boundary layer method for non-equilibrium, chemically reacting hypersonic flows, AIAA Journal, 30, 2836-2844 (1992) · Zbl 0769.76041
[2] Eldem, C., Couches limites hypersoniques avec effets de dissociation. Thèse de doctorat de l’Ecole Nationale Supérieure de l’Aéronatique et de l’Espace; Eldem, C., Couches limites hypersoniques avec effets de dissociation. Thèse de doctorat de l’Ecole Nationale Supérieure de l’Aéronatique et de l’Espace
[3] Van Dyke, M., Second order compressible boundary layer theory with application to blunt bodies in hypersonic flow. In Hypersonic Flow Research, Vol. 7; Van Dyke, M., Second order compressible boundary layer theory with application to blunt bodies in hypersonic flow. In Hypersonic Flow Research, Vol. 7
[4] Van Dyke, M., Perturbation Methods in Fluid Mechanics; Van Dyke, M., Perturbation Methods in Fluid Mechanics · Zbl 0329.76002
[5] Nishida, M. and Sakamura, Y., Thermal and chemical nonequilibrium viscous shock layer flows over a blunt body at high altitudes. In Proceedings of the 17th International Symposium on Rarefied Gas Dynamics; Nishida, M. and Sakamura, Y., Thermal and chemical nonequilibrium viscous shock layer flows over a blunt body at high altitudes. In Proceedings of the 17th International Symposium on Rarefied Gas Dynamics
[6] Gupta, R. N.; Lee, K. P.; Zoby, E. V.; Moss, J. N.; Thompson, R. A., Hypersonic viscous shock layer solutions over long slender bodies—part 1: high Reynolds number flows, Journal of Spacecraft & Rockets, 27, 175-184 (1990)
[7] Aupoix, B.; Brazier, J. Ph; Cousteix, J., Asymptotic defect boundary-layer theory applied to hypersonic flows, AIAA Journal, 30, 1252-1259 (1992) · Zbl 0756.76038
[8] Brazier, J. Ph, Etude de la couche limite en formulation déficitaire. Thèse de doctorat de l’Ecole Nationale Supérieure de l’Aéronautique et de l’Espace; Brazier, J. Ph, Etude de la couche limite en formulation déficitaire. Thèse de doctorat de l’Ecole Nationale Supérieure de l’Aéronautique et de l’Espace · Zbl 0699.76047
[9] Brazier, J. Ph and Séror, S., Extension of the defect approach to laminar flows in chemical non-equilibrium. Rapport final DERAT no. 59/5005.61; Brazier, J. Ph and Séror, S., Extension of the defect approach to laminar flows in chemical non-equilibrium. Rapport final DERAT no. 59/5005.61
[10] Séror, S.; Zeitoun, D.; Brazier, J. Ph; Schall, E., Asymptotic defect boundary layer theory applied to thermochemical nonequilibrium hypersonic flows, Journal of Fluid Mechanics, 339, 213-238 (1997) · Zbl 0890.76035
[11] Schwane, R. and Muylaert, J. MSTP Workshop 1994 Description of test cases: Fourth European High Velocities Database Workshop, ESTEC document YPA/1495/RS Noordwijk; Schwane, R. and Muylaert, J. MSTP Workshop 1994 Description of test cases: Fourth European High Velocities Database Workshop, ESTEC document YPA/1495/RS Noordwijk
[12] Durand, G., Vanmol, D. and Muylaert, J., MSTP Workshop 1996, Reentry aerothermodynamics and ground-to-flight extrapolation: Test cases definition, ESA/ESTEC document 95/MSM/TD/T/327 Noordwijk, November 1995; Durand, G., Vanmol, D. and Muylaert, J., MSTP Workshop 1996, Reentry aerothermodynamics and ground-to-flight extrapolation: Test cases definition, ESA/ESTEC document 95/MSM/TD/T/327 Noordwijk, November 1995
[13] Nebbache, A. and Zeitoun, D., Application of an implicit numerical method to the computations of laminar and turbulent flows. In Numerical Method in Laminar and Turbulent Flow; Nebbache, A. and Zeitoun, D., Application of an implicit numerical method to the computations of laminar and turbulent flows. In Numerical Method in Laminar and Turbulent Flow
[14] Zeitoun, D. E.; Schall, E.; Burtschell, Y.; Druguet, M. C., Vibration-dissociation coupling in nonequilibrium hypersonic viscous flows, AIAA Journal, 33, 79-85 (1995)
[15] Schall, E.; Burtschell, Y.; Zeitoun, D. E., Numerical study of non-equilibrium processes in high enthalpy flows, International Journal of Numerical Methods Heat and Fluid Flow, 5, 271-281 (1995) · Zbl 0826.76053
[16] Désidéri, J. A. and Salvetti, M. V., Inviscid non-equilibrium flow in the vicinity of a stagnation point. In Comptes Rendue Academic des Sciences Paris; Désidéri, J. A. and Salvetti, M. V., Inviscid non-equilibrium flow in the vicinity of a stagnation point. In Comptes Rendue Academic des Sciences Paris · Zbl 0769.76074
[17] Lobb, R. K., Experimental measurement of shock detachment distance on sphere in air at hypervelocity. In Proceedings of the High Temperature Aspect of Hypersonic Flows; Lobb, R. K., Experimental measurement of shock detachment distance on sphere in air at hypervelocity. In Proceedings of the High Temperature Aspect of Hypersonic Flows
[18] Mason, E. A.; Monchick, L., Heat conductivity of polyatomic and polar gases, Journal of Chemistry and Physics, 36, 1622-1639 (1962)
[19] Glotz, G. and Schönauer W., Einfluß des chemiemodells und der randbedingungen auf die hyperschallgrenzschicht bei Luft, Universität Karlsruhe—Rechenzentrum interner bericht, 1977, No. 12; Glotz, G. and Schönauer W., Einfluß des chemiemodells und der randbedingungen auf die hyperschallgrenzschicht bei Luft, Universität Karlsruhe—Rechenzentrum interner bericht, 1977, No. 12
[20] Gardiner, W. C. Jr, Combustion Chemistry; Gardiner, W. C. Jr, Combustion Chemistry
[21] Barrère, M. and Prudhomme, R., Equations fondamentales de l’aérothermochimie; Barrère, M. and Prudhomme, R., Equations fondamentales de l’aérothermochimie
[22] Landau, L.; Teller, E., Theory of sound dispersion, Physikalische Zeitschrift der Sowjetunion, 10, 34-43 (1936)
[23] Breashears, W. D.; Bird, P. F., Effects of oxygen atoms on the vibrational relaxation of nitrogen, Journal of Chemistry and Physics, 48, 4773-4783 (1968)
[24] Breen, J. E.; Quy, R. B.; Glass, G. P., Vibrational relaxation of \(O_2\) in the presence of atomic oxygen, Journal of Chemistry and Physics, 59, 556-557 (1973)
[25] Thivet, F.; Perrin, M. Y.; Candel, S., A unified nonequilibrium model for hypersonic flows, Physics and Fluids A, 3, 2799-2812 (1991) · Zbl 0825.76716
[26] Millikan, R. C.; White, D. R., Systematics of vibrational relaxation, Journal of Chemistry and Physics, 39, 3209-3213 (1963)
[27] MacCormack, R. W.; Candler, G. V., The solutions of the Navier-Stokes equations Gauss-Seidel line relaxation, Computer and Fluids, 17, 135-150 (1989) · Zbl 0664.76031
[28] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Series in computational methods in mechanics and thermal sciences; Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Series in computational methods in mechanics and thermal sciences
[29] Sagnier, Ph and Vérant, J. L., Validation of high enthalpy wind tunnel simulations. In Computational Methods in Applied Sciences ’96; Sagnier, Ph and Vérant, J. L., Validation of high enthalpy wind tunnel simulations. In Computational Methods in Applied Sciences ’96
[30] Jameson, A., Schmidt, W. and Turkel, E., Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes; Jameson, A., Schmidt, W. and Turkel, E., Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes
[31] Brazier, J. Ph, Aupoix, B. and Cousteix, J., Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer. In 5th Symposium on Numerical and Physical Aspects of Aerodynamic Flows; Brazier, J. Ph, Aupoix, B. and Cousteix, J., Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer. In 5th Symposium on Numerical and Physical Aspects of Aerodynamic Flows · Zbl 0756.76038
[32] Zhluktov, S. V.; Utyuzhnikov, S. V.; Tirskiy, G. A., Numerical investigation of thermal and chemical nonequilibrium flows past slender blunted cones, Journal of Thermophysics and Heat Transfer, 10, 1, 137-147 (1996)
[33] Hindmarsh, A. C., ODE Solvers for Use with the Method of Lines, Lawrence Livermore Laboratory, UCRL-85293, Livermore, CA, March, 1981; Hindmarsh, A. C., ODE Solvers for Use with the Method of Lines, Lawrence Livermore Laboratory, UCRL-85293, Livermore, CA, March, 1981
[34] Tam, L. T., An, M. Y. and Campbell, C. H., Nonequilibrium hypersonic flow computation for weakly ionized air and comparison with flight data, AIAA paper 93-3195, AIAA 24th Plasmadynamics and Lasers Conference; Tam, L. T., An, M. Y. and Campbell, C. H., Nonequilibrium hypersonic flow computation for weakly ionized air and comparison with flight data, AIAA paper 93-3195, AIAA 24th Plasmadynamics and Lasers Conference
[35] Candler, G., On the computation of shock shape in nonequilibrium hypersonic flows, AIAA paper 89-0312, AIAA 27th Aerospace science meeting; Candler, G., On the computation of shock shape in nonequilibrium hypersonic flows, AIAA paper 89-0312, AIAA 27th Aerospace science meeting
[36] Gaitonde, D.; Shang, J. S., Accuracy of flux-split algorithms in high-speed viscous flows, AIAA Journal, 31, 1215-1221 (1993) · Zbl 0782.76065
[37] Corjon, A., Méthodes de calcul des couches limites laminaires hypersoniques. Application àla navette HERMES, Thèse de doctorat de l’Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, France, 1992; Corjon, A., Méthodes de calcul des couches limites laminaires hypersoniques. Application àla navette HERMES, Thèse de doctorat de l’Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, France, 1992
[38] Joly, N. M.; Coquel, F.; Marmignon, C.; Aretz, W.; Metz, S.; Wilhelmi, H., Numerical simulation of heat transfer and relaxation in nonequilibrium air at hypersonic speeds, La Recherche Aérospatiale, 3, 219-234 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.