×

Prospects for declarative mathematical modeling of complex biological systems. (English) Zbl 1422.92058

Summary: Declarative modeling uses symbolic expressions to represent models. With such expressions, one can formalize high-level mathematical computations on models that would be difficult or impossible to perform directly on a lower-level simulation program, in a general-purpose programming language. Examples of such computations on models include model analysis, relatively general-purpose model reduction maps, and the initial phases of model implementation, all of which should preserve or approximate the mathematical semantics of a complex biological model. The potential advantages are particularly relevant in the case of developmental modeling, wherein complex spatial structures exhibit dynamics at molecular, cellular, and organogenic levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit from both the expressive power of declarative modeling languages and the application of model reduction methods to link models across scale. Based on previous work, here we define declarative modeling of complex biological systems by defining the operator algebra semantics of an increasingly powerful series of declarative modeling languages including reaction-like dynamics of parameterized and extended objects; we define semantics-preserving implementation and semantics-approximating model reduction transformations; and we outline a “meta-hierarchy” for organizing declarative models and the mathematical methods that can fruitfully manipulate them.

MSC:

92C42 Systems biology, networks
92C15 Developmental biology, pattern formation
05C90 Applications of graph theory
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Banwarth-Kuhn M, Nematbakhsh A, Rodriguez KW, Snipes S, Rasmussen CG, Reddy GV, Alber M (2018) Cell-based model of the generation and maintenance of the shape and structure of the multilayered shoot apical meristem of Arabidopsis thaliana. Bull Math Biol. https://doi.org/10.1007/s11538-018-00547-z · Zbl 1422.92092 · doi:10.1007/s11538-018-00547-z
[2] Behr N, Danos V, Garnier I (2016) Stochastic mechanics of graph rewriting. In: Proceedings of the 31st annual ACM/IEEE symposium on logic in computer science, New York City, USA, pp 46-55 · Zbl 1401.68132
[3] Bendich P, Cohen-Steiner D, Edelsbrunner H, Harer J, Morozov D (2007) Inferring local homology from sampled stratified spaces. In: Proceedings of the 48th annual IEEE symposium on foundations of computer science, pp 536-546
[4] Burkardt J, Gunzburger M, Lee H-C (2006) POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput Methods Appl Mech Eng 196(1-3):337-355 · Zbl 1120.76323 · doi:10.1016/j.cma.2006.04.004
[5] Cardelli L (2008) On process rate semantics. Theor Comput Sci 391:190-215 · Zbl 1133.68054 · doi:10.1016/j.tcs.2007.11.012
[6] Chakrabortty B, Willemsen V, de Zeeuw T, Liao C-Y, Weijers D, Mulder B, Scheres B (2018) A plausible microtubule-based mechanism for cell division orientation in plant embryogenesis. Curr Biol 28:1-13. https://doi.org/10.1016/j.cub.2018.07.025 · doi:10.1016/j.cub.2018.07.025
[7] Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signaling. Lect Notes Comput Sci 4703:17-41 · Zbl 1151.68723 · doi:10.1007/978-3-540-74407-8_3
[8] Danos V, Feret J, Fontana W, Harmer R, Hayman J, Krivine J, Thompson-Walsh CD, Winskel G (2012) Graphs, rewriting and pathway reconstruction for rule-based models. FSTTCS 2012:276-288 · Zbl 1354.68193
[9] Demir E et al (2010) BioPAX—a community standard for pathway data sharing. Nat Biotechnol 28(9):935-942 · doi:10.1038/nbt.1666
[10] Doi M (1976a) Second quantization representation for classical many-particle system. J Phys A Math Gen 9:1465 · doi:10.1088/0305-4470/9/9/008
[11] Doi M (1976b) Stochastic theory of diffusion-controlled reactions. J Phys A Math Gen 9:1479 · doi:10.1088/0305-4470/9/9/009
[12] Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of algebraic graph transformation. Springer, Berlin · Zbl 1095.68047
[13] Ermentrout, B.; Bower (ed.); Bolouri (ed.), Simplifying and reducing complex models (2004), New York
[14] Ernst OK, Bartol T, Sejnowski T, Mjolsness E (2018) Learning dynamic Boltzmann distributions as reduced models of spatial chemical kinetics. J Chem Phys 149:034107. arXiv:1803.01063
[15] Frey B (2003) Extending factor graphs so as to unify directed and undirected graphical models. In: Proceedings of the nineteenth conference on uncertainty in artificial intelligence (UAI2003). arXiv:1212.2486
[16] Golightly A, Wilkinson DJ (2011) Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interf Focus 1:807-820. https://doi.org/10.1098/rsfs.2011.0047 · doi:10.1098/rsfs.2011.0047
[17] Johnson GT (2012) Dependency diagrams and graph- constrained correlation dynamics: new systems for probabilistic graphical modeling. Ph.D. thesis, Computer Science Department, University of California, Irvine
[18] Johnson T, Bartol T, Sejnowski T, Mjolsness E (2015) Model reduction for stochastic CaMKII reaction kinetics in synapses by graph-constrained correlation dynamics. Phys Biol 12:4 · doi:10.1088/1478-3975/12/4/045005
[19] Jönsson H, Heisler M, Reddy V, Agrawal V, Gor V, Shapiro BE, Mjolsness E, Meyerowitz EM (2005) Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21(suppl1):i232i240
[20] Jönsson H, Heisler M, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An Auxin-driven polarized transport model for phyllotaxis. In: Proceedings of the national academy of sciences
[21] Jönsson H, Sainsbury Laboratory Cambridge University Research Group (2018) “The Organism-Tissue Simulator”, simulation software source code in the C++ language. https://gitlab.com/slcu/teamhj/organism. Accessed December 2018
[22] Joyner D, Čertk O, Meurer A, Granger BE (2012) Open source computer algebra systems: SymPy. ACM Commun Comput Algebra 45(3/4):225-234 · Zbl 1305.68357 · doi:10.1145/2110170.2110185
[23] Julien J-D, Pumir A, Boudaoud A (2019) Strain- or stress-sensing in mechanochemical patterning by the phytohormone Auxin. Bull Math Biol. https://doi.org/10.1007/s11538-019-00600-5 · Zbl 1422.92017 · doi:10.1007/s11538-019-00600-5
[24] Kac M (1974) A stochastic model related to the telegraphers equation. Rocky Mt J Math 4(3):497-509 · Zbl 0314.60052 · doi:10.1216/RMJ-1974-4-3-497
[25] Lauritzen SL (1995) Graphical models. Oxford Science Publications, Oxford · Zbl 0875.62237
[26] Maignan L, Spicher A (2015) Global graph transformations. In: Plump D (ed) Proceedings of the 6th international workshop on graph computation models, L’Aquila, Italy. CUER workshop proceedings, vol 1403, pp 34-49 (July 20, 2015). http://ceur-ws.org/Vol-1403/. Accessed June 2019
[27] Mattis DC, Glasser ML (1998) The uses of quantum field theory in diffusion-limited reactions. Rev Mod Phys 70:979 · doi:10.1103/RevModPhys.70.979
[28] Mironova VV, Omelyanchuk NA, Novoselova ES, Doroshkov AV, Kazantsev FV, Kochetov AV, Kolchanov NA, Mjolsness E, Likhoshvai VA (2012) Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance. Ann Botany 110(2):349-360. https://doi.org/10.1093/aob/mcs069 · doi:10.1093/aob/mcs069
[29] Mjolsness E, Sharp DH, Reinitz J (1991) A connectionist model of development. J Theor Biol 152(4):429-454 · doi:10.1016/S0022-5193(05)80391-1
[30] Mjolsness E (2005) Stochastic process semantics for dynamical grammar syntax: an overview. arXiv:cs/0511073
[31] Mjolsness E, Yosiphon G (2006) Stochastic process semantics for dynamical grammars. Ann Math Artif Intell 47(3-4):329-395 · Zbl 1113.68061
[32] Mjolsness E, Orendorff D, Chatelain P, Koumoutsakos P (2009) An exact accelerated stochastic simulation algorithm. J Chem Phys 130:144110 · doi:10.1063/1.3078490
[33] Mjolsness E (2010) Towards measurable types for dynamical process modeling languages. In: Proceedings of the 26th conference on mathematical foundations of programming semantics (MFPS 2010). Electronic notes in theoretical computer science (ENTCS), vol 265, pp 123-144, 6 Sept 2010, Elsevier · Zbl 1342.68199
[34] Mjolsness E, Cunha A (2012) Topological object types for morphodynamic modeling languages. In: PMA 2012: IEEE fourth international symposium on plant growth modeling, visualization and applications. Shanghai China, October 2012. IEEE Press
[35] Mjolsness E (2013) Time-ordered product expansions for computational stochastic systems biology. Phys Biol 10:035009 · doi:10.1088/1478-3975/10/3/035009
[36] Morrison MJ, Kinney JB (2016) Modeling multi-particle complexes in stochastic chemical systems. arXiv:1603.07369v1
[37] Orendorff D, Mjolsness E (2012) A hierarchical exact accelerated stochastic simulation algorithm. J Chem Phys 137:214104. https://doi.org/10.1063/1.4766353. arXiv:1212.4080 · doi:10.1063/1.4766353
[38] Peliti L (1985) Path integral approach to birth-death processes on a lattice. J Phys Fr 46:1469 · doi:10.1051/jphys:019850046090146900
[39] Perlis A (1982) Epigram No. 102. In: “Epigrams in Programming”, ACM SIGPLAN September, 1982. https://cpsc.yale.edu/epigrams-programming. Accessed March 2018
[40] Prusinkiewicz P, Hammel MS, Mjolsness E (1993) Animation of plant development. In: SIGGRAPH ’93 conference proceedings, ACM
[41] Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, Mjolsness ED (2003) Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19(5):677-678 · doi:10.1093/bioinformatics/btg042
[42] Shapiro BE, Jönsson H, Sahlin P, Heisler M, Roeder A, Burl M, Meyerowitz EM, Mjolsness ED (2012) Tessellations and pattern formation in plant growth and development. arXiv:1209.2937
[43] Shapiro BE, Meyerowitz E, Mjolsness E (2013) Using cellzilla for plant growth simulations at the cellular level. Front Plant Biophys Model 4:00408
[44] Shapiro BE, Mjolsness E (2015) Pycellerator: an arrow-based reaction-like modelling language for biological simulations. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv596 · doi:10.1093/bioinformatics/btv596
[45] Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in arabidopsis cortical arrays. Science. https://doi.org/10.1126/science.1083529
[46] Shellard A, Szabo A, Trepat X, Mayor R (2018) Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis. Science 362(6412):19 · doi:10.1126/science.aau3301
[47] Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci Chem Sci 8:3192-3203 · doi:10.1039/C6SC05720A
[48] Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, Deaconescu AM, Roll-Mecak A (2018) Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science 361(6404):eaau1504. https://doi.org/10.1126/science.aau1504 · doi:10.1126/science.aau1504
[49] Wang Y, Christley S, Mjolsness E, Xie X (2010) Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent. BMC Syst Biol 4:99 · doi:10.1186/1752-0509-4-99
[50] Winograd T (1975) Frame representations and the procedural—declarative controversy. In: Bobrow D, Collins A (eds) Representation and understanding: studies in cognitive science. Academic Press, pp 185-210. http://hci.stanford.edu/winograd/papers/FrameRep.pdf. Accessed Oct 2018
[51] Wolff HB, Davidson LA, Merks RMH (2019) Adapting a plant tissue model to animal development: introducing cell sliding into VirtualLeaf. Bull Math Biol. https://doi.org/10.1007/s11538-019-00599-9 · Zbl 1422.92021 · doi:10.1007/s11538-019-00599-9
[52] Wolfram Research, Inc (2018) Mathematica Version 11. Wolfram Research Inc, Champaign
[53] Yang C-R, Shapiro BE, Mjolsness ED, Hatfield GW (2005) An enzyme mechanism language for the mathematical modeling of metabolic pathways. Bioinformatics 21(6):774-0780. https://doi.org/10.1093/bioinformatics/bti068 · doi:10.1093/bioinformatics/bti068
[54] Yosiphon G (2009) Stochastic parameterized grammars: formalization, inference, and modeling applications. Ph.D. thesis, Computer Science Department, University of California, Irvine, June 2009. Thesis and code available at http://computableplant.ics.uci.edu/theses/guy/downloads/DGPublications.html. Accessed Oct 2018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.