×

A multiscale data-driven approach for bone tissue biomechanics. (English) Zbl 1506.74209

Summary: The data-driven methodology with application to continuum mechanics relies upon two main pillars: (i) experimental characterization of stress-strain pairs associated to different loading states, and (ii) numerical elaboration of the elasticity equations as an optimization (searching) algorithm using compatibility and equilibrium as constraints. The purpose of this work is to implement a multiscale data-driven approach using experimental data of cortical bone tissue at different scales. First, horse cortical bone samples are biaxially loaded and the strain fields are recorded over a region of interest using a digital image correlation technique. As a result, both microscopic strain fields and macroscopic strain states are obtained by a homogenization procedure, associated to macroscopic stress loading states which are considered uniform along the sample. This experimental outcome is here referred as a multiscale dataset. Second, the proposed multiscale data-driven methodology is implemented and analyzed in an example of application. Results are presented both in the macroscopic and microscopic scales, with the latter considered just as a post-process step in the formulation. The macroscopic results show non-smooth strain and stress patterns as a consequence of the tissue heterogeneity which suggest that a preassumed linear homogeneous orthotropic model may be inaccurate for bone tissue. Microscopic results show fluctuating strain fields – as a consequence of the interaction and evolution of the microconstituents – an order of magnitude higher than the averaged macroscopic solution, which evidences the need of a multiscale approach for the mechanical analysis of cortical bone, since the driving force of many biological bone processes is local at the microstructural level. Finally, the proposed multiscale data-driven technique may also be an adequate strategy for the solution of intractable large size multiscale \(\mathrm{FE}^2\) computational approaches since the solution at the microscale is obtained as a postprocessing. As a main conclusion, the proposed multiscale data-driven methodology is a useful alternative to overcome limitations in the continuum mechanical study of the bone tissue. This methodology may also be considered as a useful strategy for the analysis of additional biological or technological hierarchical multiscale materials.

MSC:

74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Hill, S.; Provost, F.; Volinsky, C., Network-based marketing: Identifying likely adopters via consumer networks, Statist. Sci., 256-276 (2006) · Zbl 1426.62374
[2] Aneshensel, C. S., Theory-Based Data Analysis for the Social Sciences (2013), Sage
[3] Raghupathi, W.; Raghupathi, V., Big data analytics in healthcare: promise and potential, Health Inf. Sci. Sys., 2, 1, 1 (2014)
[4] Atzori, L.; A. Iera, A.; Morabito, G., The Internet of Things: A survey, Comput. Netw., 54, 15, 2787-2805 (2010) · Zbl 1208.68071
[5] Kirchdoerfer, T.; Ortiz, M., Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304, 81-101 (2016) · Zbl 1425.74503
[6] Kirchdoerfer, T.; Ortiz, M., Data-driven computing in dynamics, Internat. J. Numer. Methods Engrg., 113, 11, 1697-1710 (2018)
[7] Kirchdoerfer, T.; Ortiz, M., Data driven computing with noisy material data sets, Comput. Methods. Appl. Mech. Engrg., 326, 622-641 (2017) · Zbl 1464.62282
[8] Ayensa-Jimenez, J.; Doweidar, M. H.; Sanz-Herrera, J. A.; Doblare, M., A new reliability-based data-driven approach for noisy experimental data with physical constraints, Comput. Methods Appl. Mech. Engrg., 328, 752-774 (2018) · Zbl 1439.65217
[9] Ayensa-Jimenez, J.; Doweidar, M. H.; Sanz-Herrera, J. A.; Doblare, M., An unsupervised data completion method for physically-based data-driven models, Comput. Methods Appl. Mech. Engrg., 344, 120-143 (2019) · Zbl 1440.62397
[10] Ibañez, R.; Abisset-Chavanne, E.; Gonzalez, D.; Duval, J.; Cueto, E.; Chinesta, F., Hybrid constitutive modeling: data-driven learning of corrections to plasticity models, Int. J. Mat. Forming., 12, 717-725 (2019)
[11] Ibañez, R.; Borzacchiello, D.; Aguado, J. V.; Abisset-Chavanne, E.; Cueto, E.; Ladeveze, P.; Chinesta, F., Data-driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput. Mech., 60, 813-826 (2017) · Zbl 1387.74015
[12] Kouznetsova, V.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale constitu- tive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Internat. J. Numer. Methods Engrg., 54, 1235-1260 (2002) · Zbl 1058.74070
[13] Miehe, C.; Bayreuther, C. G., On multiscale FE analyses of heterogeneous structures: From homogenization to multigrid solvers, Internat. J. Numer. Methods Engrg., 71, 1135-1180 (2007) · Zbl 1194.74443
[14] Terada, K.; Kikuchi, N., A class of general algorithms for multi-scale analyses of heterogeneous media, Comput. Methods Appl. Mech. Engrg., 190, 5427-5464 (2001) · Zbl 1001.74095
[15] Kulkarni, M. G.; Matous, K.; Geubelle, P. H., Coupled multi-scale cohesive modeling of failure in heterogeneous adhesives, Internat. J. Numer. Methods Engrg., 84, 916-946 (2010) · Zbl 1202.74153
[16] Reina-Romo, E.; Sanz-Herrera, J. A., Multiscale simulation of particle-reinforced elastic-plastic adhesives at small strains, Comput. Methods Appl. Mech. Engrg., 200, 2211-2222 (2011) · Zbl 1230.74196
[17] Claes, L. E.; Heigele, C. A., Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing, J. Biomech., 32, 255-266 (1999)
[18] Carter, D. R.; Blenman, P.; Beaupre, G. S., Correlations between mechanical stress history and tissue differentiation in initial fracture healing, J. Orthop. Res., 6, 736-748 (1988)
[19] Cowin, S. C., Mechanosensation and uid transport in living bone, J. Musculoskelet. Neuronal Interact., 2, 256-260 (2002)
[20] Sanz-Herrera, J. A.; Garcia-Aznar, J. M.; Doblare, M., Micro-macro numerical modelling of bone regeneration in tissue engineering, Comput. Methods Appl. Mech. Engrg., 197, 3092-3107 (2008) · Zbl 1194.74204
[21] Sanz-Herrera, J. A.; Garcia-Aznar, J. M.; Doblare, M., On scaffold designing for bone regeneration: A computational multiscale approach, Acta Biomater., 5, 219-229 (2009)
[22] Nguyen, T. K.; Carpentier, O.; Monchau, F.; Chai, F.; Hornez, J. C.; Hivart, P., Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: A multiscale model, Med. Eng. Phys., 57, 40-50 (2018)
[23] Montero-Chacon, F.; Sanz-Herrera, J. A.; Doblare, M., Computational multiscale solvers for continuum approaches, Materials, 12, 5, 691 (2019)
[24] Feyel, F., Multiscale FE2 elastoviscoplastic analysis of composite structures, Comput. Mater. Sci., 16, 344-354 (1999)
[25] Yuan, Z.; Fish, J., Toward realization of computational homogenization in practice, Internat. J. Numer. Methods Engrg., 73, 361-380 (2007) · Zbl 1159.74044
[26] El Halabi, F.; Gonzalez, D.; Sanz-Herrera, J. A.; Doblare, M., A PGD-based multiscale formulation for non-linear solid mechanics under small deformations, Comput. Methods Appl. Mech. Engrg., 305, 806-826 (2016) · Zbl 1425.74460
[27] Evans, F. G.; Vincentelli, R., Relation of collagen fiber orientation to some mechanical properties of human cortical bone, J. Biomech., 2, 1, 63-71 (1969)
[28] Tai, K.; Dao, M.; Suresh, S.; Palazoglu, A.; Ortiz, C., Nanoscale heterogeneity promotes energy dissipation in bone, Nature Mater., 6, 6, 454-462 (2007)
[29] Scharmga, A.; Peters, M.; van Tubergen, A.; van den Bergh, J.; de Jong, J.; Loeffen, D.; van Rietbergen, B.; Weijers, R.; Geusens, P., Visual detection of cortical breaks in hand joints: reliability and validity of high-resolution peripheral quantitative CT compared to microCT, BMC Musculoskelet. Disord., 17, 271 (2016)
[30] Brouwers, J. E.; van Rietbergen, B.; Huiskes, R.; Ito, K., Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT, Osteoporos. Int., 20, 11, 1823-1835 (2009)
[31] Mora-Macías, J.; Pajares, A.; Miranda, P.; Dominguez, J.; Reina-Romo, E., Mechanical characterization via nanoindentation of the woven bone developed during bone transport, J. Mech. Behav. Biomed. Mater., 74, 236-244 (2017)
[32] Carriero, A.; Abela, L.; Pitsillides, A. A.; Shefelbine, S. J., Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model, J. Biomech., 47, 10, 2490-2497 (2014)
[33] Sztefek, P.; Vanleene, M.; Olsson, R.; Collinson, R.; Pitsillides, A. A.; Shefelbine, S., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia, J. Biomech., 43, 4, 599-605 (2010)
[34] Thompson, M. S.; Schell, H.; Lienau, J.; Duda, G. N., Digital image correlation: a technique for determining local mechanical conditions within early bone callus, Med. Eng. Phys., 29, 7, 820-823 (2007)
[35] Gustafsson, A.; Mathavan, N.; Turunen, M. J.; Engqvist, J.; Khayyeri, H.; Hall, S. A.; Isaksson, H., Linking multiscale deformation to microstructure in cortical bone using in situ loading, digital image correlation and synchrotron X-ray scattering, Acta Biomater., 69, 323-331 (2018)
[36] Marieb, E. N., Bone Skeletal Tissues Part a. Human Anatomy and Physiology (2004), Pearson education Inc.
[37] Currey, J. D., Bones: Structure and Mechanics (2006), Princeton University Press Editions
[38] Vázquez, J., Efecto de Las Tensiones Residuales en la Fatiga por Fretting (2010), University of Seville, (Ph.D. thesis)
[39] Sutton, M. A.; McNeill, S. R.; Helm, J. D.; Chao, Y. J., Advances in two-dimensional and three-dimensional computer vision, (Rastogi, P. K., Photomechanics, Topics Appl. Phys, 77 (2000), Springer-Verlag Berlin Heidelberg), 323-372
[40] Sutton, M. A.; Orteu, J. J.; Schreier, H., Digital image correlation, (Sutton, M. A.; Orteu, J. J.; Schreier, H., Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts Theory and Applications (2009)), 81-116, (Chapter 5)
[41] Suquet, P. M., Elements of homogenization for inelastic solid mechanics. Trends and applications of pure mathematics to mechanics, (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media. Homogenization Techniques for Composite Media, Lecture Notes in Physics (1987), Springer: Springer Berlin), 193-278 · Zbl 0645.73012
[42] Eggersmann, R.; Kirchdoerfer, T.; Reese, S.; Stainier, L.; Ortiz, M., Model-free data-driven inelasticity, Comput. Methods Appl. Mech. Engrg., 350, 81-99 (2019) · Zbl 1441.74048
[43] Reilly, D.; Burstein, A., The elastic and ultimate properties of compact bone tissue, J. Biomech., 8, 393-405 (1975)
[44] Taylor, W. R.; Roland, E.; Ploeg, H.; Hertig, D.; Klabunde, R.; Warner, M. D.; Hobatho, M. C.; Rakotomanana, L.; Clift, S. E., Determination of orthotropic bone elastic constants using FEA and modal analysis, J. Biomech., 35, 767-773 (2002)
[45] Bernard, S.; Grimal, Q.; Laugier, P., Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy, J. Mech. Behav. Biomed. Mater., 18, 12-19 (2013)
[46] Zhang, H.-W.; Wu, J.-K.; Lu, J.; Fu, Z.-G., Extended multiscale finite element method for mechanical analysis of heterogeneous materials, Acta Mech. Sin., 26, 899-920 (2010) · Zbl 1270.74196
[47] Matous, K.; Geers, M. G.D.; Kouznetsova, V. G.; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 192-220 (2017)
[48] Gonzalez, D.; Chinesta, F.; Cueto, E., Learning corrections for hyperelastic models from data, Front. Math., 6, 14 (2019)
[49] Isaksson, H.; Comas, O.; van Donkelaar, C. C.; Mediavilla, J.; Wilson, W.; Huiskes, R.; Ito, K., Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity, J. Biomech., 40, 2002-2011 (2007)
[50] Leygue, A.; Coret, M.; Réthoré, J.; Stainier, L.; Verron, E., Data-based derivation of material response, Comput. Methods Appl. Mech. Engrg., 331, 184-196 (2018) · Zbl 1439.74050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.