Gautam, Pragati; Mishra, Vishnu Narayan; Negi, Komal Common fixed point theorems for cyclic Ćirić-Reich-Rus contraction mappings in quasi-partial \(b\)-metric space. (English) Zbl 07297271 Ann. Fuzzy Math. Inform. 20, No. 2, 149-156 (2020). MSC: 47H09 47H10 54H25 PDF BibTeX XML Cite \textit{P. Gautam} et al., Ann. Fuzzy Math. Inform. 20, No. 2, 149--156 (2020; Zbl 07297271) Full Text: DOI
Wang, Yamin; Sai, Pengfei Common fixed point theorems for generalized cyclic contraction pairs in \({b_2}\)-metric spaces. (English) Zbl 07295055 Chin. Q. J. Math. 35, No. 1, 63-76 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{P. Sai}, Chin. Q. J. Math. 35, No. 1, 63--76 (2020; Zbl 07295055) Full Text: DOI
Fouladi, Farhad; Abkar, Ali; Karapinar, Erdal Weak proximal normal structure and coincidence quasi-best proximity points. (English) Zbl 07261536 Appl. Gen. Topol. 21, No. 2, 331-347 (2020). MSC: 47H09 46B20 46T99 PDF BibTeX XML Cite \textit{F. Fouladi} et al., Appl. Gen. Topol. 21, No. 2, 331--347 (2020; Zbl 07261536) Full Text: Link
Qawaqneh, Haitham New contraction embedded with simulation function and cyclic \((\alpha,\beta)\)-admissible in metric-like spaces. (English) Zbl 1444.54034 Int. J. Math. Comput. Sci. 15, No. 4, 1029-1044 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Qawaqneh}, Int. J. Math. Comput. Sci. 15, No. 4, 1029--1044 (2020; Zbl 1444.54034) Full Text: Link
Gabeleh, Moosa; Künzi, Hans-Peter A. Mappings of generalized condensing type in metric spaces with Busemann convex structure. (English) Zbl 1447.53063 Bull. Iran. Math. Soc. 46, No. 5, 1465-1483 (2020). MSC: 53C70 53C22 47H09 34A12 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{H.-P. A. Künzi}, Bull. Iran. Math. Soc. 46, No. 5, 1465--1483 (2020; Zbl 1447.53063) Full Text: DOI
Afassinou, Komi; Narain, Ojen Kumar Existence of solutions for boundary value problems via \(F\)-contraction mappings in metric spaces. (English) Zbl 1440.54029 Nonlinear Funct. Anal. Appl. 25, No. 2, 303-319 (2020). MSC: 54H25 54E40 45G10 34B10 34B15 PDF BibTeX XML Cite \textit{K. Afassinou} and \textit{O. K. Narain}, Nonlinear Funct. Anal. Appl. 25, No. 2, 303--319 (2020; Zbl 1440.54029) Full Text: Link
Ansari, Arslan H.; Nantadilok, Jamnian; Khan, Mohammad S. Best proximity points of generalized cyclic weak \((F, \psi, \varphi)\)-contractions in ordered metric spaces. (English) Zbl 1440.54031 Nonlinear Funct. Anal. Appl. 25, No. 1, 55-67 (2020). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{A. H. Ansari} et al., Nonlinear Funct. Anal. Appl. 25, No. 1, 55--67 (2020; Zbl 1440.54031) Full Text: Link
Khan, M. S.; Menaka, M.; Jacob, Geno Kadwin; Marudai, M. Proximity points for cyclic 2-convex contraction mappings. (English) Zbl 1446.54026 Nonlinear Funct. Anal. Appl. 25, No. 1, 1-12 (2020). MSC: 54H25 54E70 PDF BibTeX XML Cite \textit{M. S. Khan} et al., Nonlinear Funct. Anal. Appl. 25, No. 1, 1--12 (2020; Zbl 1446.54026) Full Text: Link
Pasupathi, R.; Chand, A. K. B.; Navascués, M. A. Cyclic iterated function systems. (English) Zbl 1444.28004 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 58, 17 p. (2020). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 28A80 37C25 47H04 47H09 47H10 PDF BibTeX XML Cite \textit{R. Pasupathi} et al., J. Fixed Point Theory Appl. 22, No. 3, Paper No. 58, 17 p. (2020; Zbl 1444.28004) Full Text: DOI
Shukri, S. Existence and convergence of best proximity points in \( \mathrm{CAT}_\mathrm{p}(0)\) spaces. (English) Zbl 1435.54034 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 48, 10 p. (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{S. Shukri}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 48, 10 p. (2020; Zbl 1435.54034) Full Text: DOI
Gabeleh, Moosa; Künzi, Hans-Peter A. Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings. (English) Zbl 1446.47013 Demonstr. Math. 53, 38-43 (2020). MSC: 47H09 47J25 46B20 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{H.-P. A. Künzi}, Demonstr. Math. 53, 38--43 (2020; Zbl 1446.47013) Full Text: DOI
Gupta, Anuradha; Rohilla, Manu On coupled best proximity points and Ulam-Hyers stability. (English) Zbl 1447.47045 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 28, 21 p. (2020). Reviewer: Jarosław Górnicki (Rzeszów) MSC: 47H10 47H09 41A65 47J20 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{M. Rohilla}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 28, 21 p. (2020; Zbl 1447.47045) Full Text: DOI
Aydi, Hassen; Lakzian, Hosein; Mitrović, Zoran D.; Radenović, Stojan Best proximity points of \(\mathcal{MT}\)-cyclic contractions with property UC. (English) Zbl 1436.54031 Numer. Funct. Anal. Optim. 41, No. 7, 871-882 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Aydi} et al., Numer. Funct. Anal. Optim. 41, No. 7, 871--882 (2020; Zbl 1436.54031) Full Text: DOI
Iqbal, Iram; Hussain, Nawab; Kutbi, Marwan A. Existence of the solution to variational inequality, optimization problem, and elliptic boundary value problem through revisited best proximity point results. (English) Zbl 1437.49020 J. Comput. Appl. Math. 375, Article ID 112804, 20 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 49J40 46C05 PDF BibTeX XML Cite \textit{I. Iqbal} et al., J. Comput. Appl. Math. 375, Article ID 112804, 20 p. (2020; Zbl 1437.49020) Full Text: DOI
Gabeleh, Moosa; Künzi, Hans-Peter A. Condensing operators of integral type in Busemann reflexive convex spaces. (English) Zbl 1434.53043 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1971-1988 (2020). MSC: 53C22 47H09 34A12 53C70 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{H.-P. A. Künzi}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1971--1988 (2020; Zbl 1434.53043) Full Text: DOI
Wang, Yaqin; Fang, Xiaoli; Kim, Tae-Hwa A cyclic viscosity approximation method for the multiple-set split equality common fixed-point problem. (English) Zbl 07313269 Linear Nonlinear Anal. 5, No. 2, Spec. Iss., 355-369 (2019). MSC: 47H09 47H10 47J05 54H25 PDF BibTeX XML Cite \textit{Y. Wang} et al., Linear Nonlinear Anal. 5, No. 2, 355--369 (2019; Zbl 07313269) Full Text: Link
Kumari, P. Sumati; Nantadilok, Jamnian; Sarwar, Muhammad Some generalizations of weak cyclic compatible contractions. (English) Zbl 07248518 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2018, 75-89 (2019). MSC: 54E40 54H25 PDF BibTeX XML Cite \textit{P. S. Kumari} et al., Thai J. Math. , 75--89 (2019; Zbl 07248518) Full Text: Link
Saksirikun, Warut; Berinde, Vasile; Petrot, Narin Coincidence point theorems for cyclic multi-valued and hybrid contractive mappings. (English) Zbl 07238219 Carpathian J. Math. 35, No. 1, 85-94 (2019). MSC: 54H25 54C60 PDF BibTeX XML Cite \textit{W. Saksirikun} et al., Carpathian J. Math. 35, No. 1, 85--94 (2019; Zbl 07238219)
Gabeleh, Moosa; Vetro, Calogero A best proximity point approach to existence of solutions for a system of ordinary differential equations. (English) Zbl 1440.34014 Bull. Belg. Math. Soc. - Simon Stevin 26, No. 4, 493-503 (2019). MSC: 34A12 47H09 47N20 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{C. Vetro}, Bull. Belg. Math. Soc. - Simon Stevin 26, No. 4, 493--503 (2019; Zbl 1440.34014) Full Text: DOI Euclid
Sima, Aolei; He, Fei; Lu, Ning Fixed point theorems for several cyclic-contractive mappings in dislocated quasi-\(b\)-metric spaces. (Chinese. English summary) Zbl 07155593 Acta Math. Sin., Chin. Ser. 62, No. 3, 427-440 (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Sima} et al., Acta Math. Sin., Chin. Ser. 62, No. 3, 427--440 (2019; Zbl 07155593)
Sima, Aolei; He, Fei; Lu, Ning A fixed point theorem for cyclic-contractive mapping of Pata type. (Chinese. English summary) Zbl 07155499 Acta Anal. Funct. Appl. 21, No. 2, 121-129 (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Sima} et al., Acta Anal. Funct. Appl. 21, No. 2, 121--129 (2019; Zbl 07155499) Full Text: DOI
Norouzian, M.; Abkar, A. Tripartite coincidence-best proximity points and convexity in generalized metric spaces. (English) Zbl 1427.54060 Bull. Braz. Math. Soc. (N.S.) 50, No. 4, 999-1028 (2019). MSC: 54H25 54E40 52A01 PDF BibTeX XML Cite \textit{M. Norouzian} and \textit{A. Abkar}, Bull. Braz. Math. Soc. (N.S.) 50, No. 4, 999--1028 (2019; Zbl 1427.54060) Full Text: DOI
Mebawondu, A. A.; Mewomo, O. T. Some fixed point results for modified \(F\)-contractions in metric spaces via a new type of \((\alpha, \beta)\)-cyclic admissible mappings in metric space. (English) Zbl 1449.54077 Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 65-76 (2019). MSC: 54H25 54E20 54E50 PDF BibTeX XML Cite \textit{A. A. Mebawondu} and \textit{O. T. Mewomo}, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 65--76 (2019; Zbl 1449.54077) Full Text: DOI
Liang, Min; Zhu, Chuanxi; Chen, Chunfang; Wu, Zhaoqi Some new theorems for cyclic contractions in \(G_b\)-metric spaces and some applications. (English) Zbl 1428.54015 Appl. Math. Comput. 346, 545-558 (2019). MSC: 54H25 47H09 47H10 54E40 45B05 PDF BibTeX XML Cite \textit{M. Liang} et al., Appl. Math. Comput. 346, 545--558 (2019; Zbl 1428.54015) Full Text: DOI
Naraghirad, Eskandar Bregman best proximity points for Bregman asymptotic cyclic contraction mappings in Banach spaces. (English) Zbl 07133171 J. Nonlinear Var. Anal. 3, No. 1, 27-44 (2019). MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{E. Naraghirad}, J. Nonlinear Var. Anal. 3, No. 1, 27--44 (2019; Zbl 07133171) Full Text: DOI
Pritha, A. Jennie Sebasty; Karuppiah, U. Best proximity point theorems for cyclic generalized JSC-proximal contractions. (English) Zbl 07119540 Far East J. Math. Sci. (FJMS) 112, No. 2, 153-173 (2019). MSC: 47H10 46B20 PDF BibTeX XML Cite \textit{A. J. S. Pritha} and \textit{U. Karuppiah}, Far East J. Math. Sci. (FJMS) 112, No. 2, 153--173 (2019; Zbl 07119540) Full Text: DOI
Bhandari, Samir Kumar Rational type probabilistic \(p\)-cyclic contraction results using some control functions. (English) Zbl 07116862 Bull. Calcutta Math. Soc. 111, No. 1, 1-12 (2019). MSC: 60B15 54E35 PDF BibTeX XML Cite \textit{S. K. Bhandari}, Bull. Calcutta Math. Soc. 111, No. 1, 1--12 (2019; Zbl 07116862)
Nurwahyu, Budi Fixed point theorems for cyclic weakly contraction mappings in dislocated quasi extended \(b\)-metric space. (English) Zbl 1435.54030 J. Funct. Spaces 2019, Article ID 1367879, 10 p. (2019). Reviewer: Sumit Chandok (Patiala) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{B. Nurwahyu}, J. Funct. Spaces 2019, Article ID 1367879, 10 p. (2019; Zbl 1435.54030) Full Text: DOI
Gamal’, Maria F. Examples of cyclic polynomially bounded operators that are not similar to contractions, II. (English) Zbl 1438.47036 Acta Sci. Math. 85, No. 1-2, 313-323 (2019). Reviewer: Ömer Gök (Istanbul) MSC: 47A65 47A60 47A16 47A20 PDF BibTeX XML Cite \textit{M. F. Gamal'}, Acta Sci. Math. 85, No. 1--2, 313--323 (2019; Zbl 1438.47036) Full Text: DOI
Safari-Hafshejani, Akram; Amini-Harandi, Alireza; Fakhar, Majid Best proximity points and fixed points results for noncyclic and cyclic Fisher quasi-contractions. (English) Zbl 07060066 Numer. Funct. Anal. Optim. 40, No. 5, 603-619 (2019). MSC: 47H10 47H09 47H09 PDF BibTeX XML Cite \textit{A. Safari-Hafshejani} et al., Numer. Funct. Anal. Optim. 40, No. 5, 603--619 (2019; Zbl 07060066) Full Text: DOI
Ayari, Mohamed Iadh; Mustafa, Zead; Jaradat, Mohammed Mahmoud Generalization of best proximity points theorem for non-self proximal contractions of first kind. (English) Zbl 07054942 Fixed Point Theory Appl. 2019, Paper No. 7, 10 p. (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. I. Ayari} et al., Fixed Point Theory Appl. 2019, Paper No. 7, 10 p. (2019; Zbl 07054942) Full Text: DOI
Gabeleh, M.; Olela Otafudu, O.; Shahzad, N. Best proximity point results using proximal normal structure revisited. (English) Zbl 1451.47003 J. Nonlinear Convex Anal. 19, No. 4, 603-615 (2018). MSC: 47H10 46B20 PDF BibTeX XML Cite \textit{M. Gabeleh} et al., J. Nonlinear Convex Anal. 19, No. 4, 603--615 (2018; Zbl 1451.47003) Full Text: Link
Kumari, P. Sumati; Ampadu, C. Boateng; Nantadilok, Jamnian On new fixed point results in \(E_b\)-metric spaces. (English) Zbl 07248508 Thai J. Math., Spec. Iss.: Asian Conference on Fixed Point Theory and Optimization 2018, 367-378 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{P. S. Kumari} et al., Thai J. Math. , 367--378 (2018; Zbl 07248508) Full Text: Link
Niyom, Somboon; Boriwan, Pornpimon; Petrot, Narin Existence of best proximity points for a class of generalized cyclic contraction mappings. (English) Zbl 1447.41003 Thai J. Math. 16, No. 1, 173-182 (2018). MSC: 41A17 47H09 PDF BibTeX XML Cite \textit{S. Niyom} et al., Thai J. Math. 16, No. 1, 173--182 (2018; Zbl 1447.41003) Full Text: Link
Sarnmeta, Panitarn; Suantai, Suthep Global Minimization of best proximity points for semi-cyclic Berinde contractions. (English) Zbl 07165432 Carpathian J. Math. 34, No. 3, 411-416 (2018). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{P. Sarnmeta} and \textit{S. Suantai}, Carpathian J. Math. 34, No. 3, 411--416 (2018; Zbl 07165432)
Komal, Somayya; Hussain, Azhar; Sultana, Nazra; Kumam, Poom Coincidence best proximity points for Geraghty type proximal cyclic contractions. (English) Zbl 1427.54055 J. Math. Comput. Sci., JMCS 18, No. 1, 98-114 (2018). MSC: 54H25 54E40 47H10 PDF BibTeX XML Cite \textit{S. Komal} et al., J. Math. Comput. Sci., JMCS 18, No. 1, 98--114 (2018; Zbl 1427.54055) Full Text: DOI
Mongkolkeha, Chirasak; Sintunavarat, Wutiphol Some new cyclic admissibility type with uni-dimensional and multidimensional fixed point theorems and its applications. (English) Zbl 1449.54082 J. Nonlinear Sci. Appl. 11, No. 9, 1056-1069 (2018). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{C. Mongkolkeha} and \textit{W. Sintunavarat}, J. Nonlinear Sci. Appl. 11, No. 9, 1056--1069 (2018; Zbl 1449.54082) Full Text: DOI
Zong, Chunxiang; Tang, Yuchao Iterative methods for solving the split common fixed point problem of demicontractive mappings in Hilbert spaces. (English) Zbl 1438.47144 J. Nonlinear Sci. Appl. 11, No. 8, 960-970 (2018). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{C. Zong} and \textit{Y. Tang}, J. Nonlinear Sci. Appl. 11, No. 8, 960--970 (2018; Zbl 1438.47144) Full Text: DOI
Gao, Di; Kim, Tae Hwa; Wang, Yaqin A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings. (English) Zbl 1438.47135 J. Nonlinear Sci. Appl. 11, No. 11, 1225-1234 (2018). MSC: 47J26 47H05 47H09 PDF BibTeX XML Cite \textit{D. Gao} et al., J. Nonlinear Sci. Appl. 11, No. 11, 1225--1234 (2018; Zbl 1438.47135) Full Text: DOI
Mongkolkeha, Chirasak; Cho, Yeol Je; Kumam, Poom Optimal approximate solution with best proximity point theorems via Geraghty’s cyclic contraction mapping. (English) Zbl 07083519 Nonlinear Stud. 25, No. 4, 827-837 (2018). MSC: 47H09 47H10 54H25 PDF BibTeX XML Cite \textit{C. Mongkolkeha} et al., Nonlinear Stud. 25, No. 4, 827--837 (2018; Zbl 07083519) Full Text: Link
Gao, Xinghui; Chang, Le A cyclic hybrid algorithm and its numerical realizations for a family of quasi-nonexpansive mappings. (Chinese. English summary) Zbl 1424.47143 J. Hubei Univ., Nat. Sci. 40, No. 6, 663-666 (2018). MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{X. Gao} and \textit{L. Chang}, J. Hubei Univ., Nat. Sci. 40, No. 6, 663--666 (2018; Zbl 1424.47143) Full Text: DOI
Zhou, Shanshan; Ji, Peisheng Fixed points theorems for cyclic \(\varphi\)-contractions in Kaleva-Seikkala’s type fuzzy metric spaces. (Chinese. English summary) Zbl 1424.54103 Fuzzy Syst. Math. 32, No. 4, 90-95 (2018). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{S. Zhou} and \textit{P. Ji}, Fuzzy Syst. Math. 32, No. 4, 90--95 (2018; Zbl 1424.54103)
Gupta, Vishal; Kanwar, Ashima; Mani, Naveen Fixed point results for cyclic (\(\alpha \circ \beta\))-contraction in fuzzy metric spaces. (English) Zbl 07056010 Proc. Jangjeon Math. Soc. 21, No. 4, 709-717 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. Gupta} et al., Proc. Jangjeon Math. Soc. 21, No. 4, 709--717 (2018; Zbl 07056010) Full Text: DOI
Baseri, Marzieh Ahmadi; Mazaheri, H.; Narang, T. D. Some results on convergence and existence of best proximity points. (English) Zbl 1408.41027 J. Mahani Math. Res. Cent. 7, No. 1, 13-24 (2018). MSC: 41A65 41A52 46N10 PDF BibTeX XML Cite \textit{M. A. Baseri} et al., J. Mahani Math. Res. Cent. 7, No. 1, 13--24 (2018; Zbl 1408.41027) Full Text: DOI
Basha, S. Sadiq; Shahzad, N. Generalized acyclic contractions, acyclic contractions, and reverse acyclic contractions. (English) Zbl 1437.54041 Numer. Funct. Anal. Optim. 39, No. 15, 1605-1621 (2018). Reviewer: Sumit Chandok (Patiala) MSC: 54H25 47H09 PDF BibTeX XML Cite \textit{S. S. Basha} and \textit{N. Shahzad}, Numer. Funct. Anal. Optim. 39, No. 15, 1605--1621 (2018; Zbl 1437.54041) Full Text: DOI
Olisama, Victoria O.; Olaleru, Johnson O.; Akewe, Hudson Best proximity point results for Hardy-Rogers \(p\)-proximal cyclic contraction in uniform spaces. (English) Zbl 06968539 Fixed Point Theory Appl. 2018, Paper No. 18, 15 p. (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. O. Olisama} et al., Fixed Point Theory Appl. 2018, Paper No. 18, 15 p. (2018; Zbl 06968539) Full Text: DOI
Khammahawong, K.; Kumam, P. A best proximity point theorem for Roger-Hardy type generalized \(F\)-contractive mappings in complete metric spaces with some examples. (English) Zbl 1425.54026 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 4, 1503-1519 (2018). MSC: 54H25 54E40 54E50 47H09 PDF BibTeX XML Cite \textit{K. Khammahawong} and \textit{P. Kumam}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 4, 1503--1519 (2018; Zbl 1425.54026) Full Text: DOI
Singh, Deepak; Joshi, Vishal; Kim, Jong Kyu Existence of solution to Bessel-type boundary value problem via \(G - l\) cyclic \(F\)-contractive mapping with graphical verification. (English) Zbl 06938233 Nonlinear Funct. Anal. Appl. 23, No. 2, 205-224 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{D. Singh} et al., Nonlinear Funct. Anal. Appl. 23, No. 2, 205--224 (2018; Zbl 06938233)
Ampadu, Clement Boateng Best proximity point theorems for non-self proximal Reich type contractions in complete metric spaces. (English) Zbl 06918882 Fixed Point Theory 19, No. 2, 449-452 (2018). MSC: 47H10 PDF BibTeX XML Cite \textit{C. B. Ampadu}, Fixed Point Theory 19, No. 2, 449--452 (2018; Zbl 06918882) Full Text: Link
Kumari, P. S.; Nantadilok, J.; Sarwar, M. Fixed point theorems for a class of generalized weak cyclic compatible contractions. (English) Zbl 06914779 Fixed Point Theory Appl. 2018, Paper No. 13, 15 p. (2018). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{P. S. Kumari} et al., Fixed Point Theory Appl. 2018, Paper No. 13, 15 p. (2018; Zbl 06914779) Full Text: DOI
Pasicki, Lech Dislocated quasi-metric and generalized contractions. (English) Zbl 06882496 Fixed Point Theory 19, No. 1, 359-368 (2018). Reviewer: Zoran Kadelburg (Beograd) MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{L. Pasicki}, Fixed Point Theory 19, No. 1, 359--368 (2018; Zbl 06882496) Full Text: DOI
Wu, Zhaoqi; Zhu, Chuanxi; Yuan, Chenggui Fixed point results for cyclic contractions in Menger PM-spaces and generalized Menger PM-spaces. (English) Zbl 06859083 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 2, 449-462 (2018). MSC: 47H10 46S50 47S50 PDF BibTeX XML Cite \textit{Z. Wu} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 2, 449--462 (2018; Zbl 06859083) Full Text: DOI
Naraghirad, Eskandar Existence and convergence theorems for Bregman best proximity points in reflexive Banach spaces. (English) Zbl 06858731 J. Fixed Point Theory Appl. 20, No. 1, Paper No. 39, 25 p. (2018). MSC: 47H10 37C25 PDF BibTeX XML Cite \textit{E. Naraghirad}, J. Fixed Point Theory Appl. 20, No. 1, Paper No. 39, 25 p. (2018; Zbl 06858731) Full Text: DOI
Felhi, Abdelbasset A note on “Convergence and best proximity points for Berinde’s cyclic contraction with proximally complete property”. (English) Zbl 1395.54043 Math. Methods Appl. Sci. 41, No. 1, 140-143 (2018). MSC: 54H25 54E40 41A50 PDF BibTeX XML Cite \textit{A. Felhi}, Math. Methods Appl. Sci. 41, No. 1, 140--143 (2018; Zbl 1395.54043) Full Text: DOI
Haddadi, M. R. Existence and convergence theorems for best proximity points. (English) Zbl 1379.41029 Asian-Eur. J. Math. 11, No. 1, Article ID 1850005, 7 p. (2018). MSC: 41A52 41A65 PDF BibTeX XML Cite \textit{M. R. Haddadi}, Asian-Eur. J. Math. 11, No. 1, Article ID 1850005, 7 p. (2018; Zbl 1379.41029) Full Text: DOI
Gabeleh, M.; Otafudu, O. O. Global optimization of cyclic Kannan nonexpansive mappings in nonreflexive Banach spaces. (English) Zbl 07117218 Quaest. Math. 40, No. 6, 739-751 (2017). MSC: 47H09 46B20 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{O. O. Otafudu}, Quaest. Math. 40, No. 6, 739--751 (2017; Zbl 07117218) Full Text: DOI
Padhan, Saroj Kumar; Rao, G. V. V. Jagannadha; Al-Rawashdeh, Ahmed; Nashine, Hemant Kumar; Agarwal, Ravi P. Existence of fixed points for \(\gamma\)-\(FG\)-contractive condition via cyclic \((\alpha,\beta)\)-admissible mappings in \(b\)-metric spaces. (English) Zbl 1412.47072 J. Nonlinear Sci. Appl. 10, No. 10, 5495-5508 (2017). MSC: 47H09 54H25 47H10 PDF BibTeX XML Cite \textit{S. K. Padhan} et al., J. Nonlinear Sci. Appl. 10, No. 10, 5495--5508 (2017; Zbl 1412.47072) Full Text: DOI
Hussain, Nawab; Iqbal, Iram Global best approximate solutions for set-valued cyclic \(\alpha\)-\(F\)-contractions. (English) Zbl 1412.46085 J. Nonlinear Sci. Appl. 10, No. 9, 5090-5107 (2017). MSC: 46N40 47H10 54H25 46T99 PDF BibTeX XML Cite \textit{N. Hussain} and \textit{I. Iqbal}, J. Nonlinear Sci. Appl. 10, No. 9, 5090--5107 (2017; Zbl 1412.46085) Full Text: DOI
Jleli, Mohamed; Samet, Bessem A generalized \(\theta\)-contraction and related fixed point theorems. (English) Zbl 1412.47136 J. Nonlinear Sci. Appl. 10, No. 9, 4724-4733 (2017). MSC: 47H10 PDF BibTeX XML Cite \textit{M. Jleli} and \textit{B. Samet}, J. Nonlinear Sci. Appl. 10, No. 9, 4724--4733 (2017; Zbl 1412.47136) Full Text: DOI
Wang, Yaqin; Kim, Tae-Hwa; Fang, Xiaoli; He, Huimin The split common fixed-point problem for demicontractive mappings and quasi-nonexpansive mappings. (English) Zbl 1412.47040 J. Nonlinear Sci. Appl. 10, No. 6, 2976-2985 (2017). MSC: 47H05 47H09 47H20 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Nonlinear Sci. Appl. 10, No. 6, 2976--2985 (2017; Zbl 1412.47040) Full Text: DOI
Gabeleh, Moosa; Karami, Reza Modified generalized weakly contractive and \(F\)-contraction mappings with fixed point results. (English) Zbl 07041497 Bull. Math. Anal. Appl. 9, No. 2, 1-9 (2017). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{R. Karami}, Bull. Math. Anal. Appl. 9, No. 2, 1--9 (2017; Zbl 07041497) Full Text: Link
He, Jiangyan; Liu, Lihong; Huo, Xiaoyan A cyclic algorithm for common fixed points of a finite family of quasi-nonexpansive mappings in a real Hilbert space. (Chinese. English summary) Zbl 1399.47169 J. Hebei Norm. Univ., Nat. Sci. Ed. 41, No. 5, 381-385 (2017). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{J. He} et al., J. Hebei Norm. Univ., Nat. Sci. Ed. 41, No. 5, 381--385 (2017; Zbl 1399.47169) Full Text: DOI
Baseri, M. Ahmadi; Mazaheri, H. Best proximity points for semi-cyclic contraction pairs in regular cone metric spaces. (English) Zbl 1381.41030 Math. Sci. Appl. E-Notes 5, No. 2, 36-44 (2017). MSC: 41A65 41A52 46N10 PDF BibTeX XML Cite \textit{M. A. Baseri} and \textit{H. Mazaheri}, Math. Sci. Appl. E-Notes 5, No. 2, 36--44 (2017; Zbl 1381.41030) Full Text: Link
Basha, S. Sadiq; Shahzad, N.; Vetro, C. Best proximity point theorems for proximal cyclic contractions. (English) Zbl 06817769 J. Fixed Point Theory Appl. 19, No. 4, 2647-2661 (2017). MSC: 47H10 90C26 90C30 PDF BibTeX XML Cite \textit{S. S. Basha} et al., J. Fixed Point Theory Appl. 19, No. 4, 2647--2661 (2017; Zbl 06817769) Full Text: DOI
Choudhury, Binayak S.; Bhandari, Samir Kumar; Saha, Parbati Unique fixed points of \(p\)-cyclic Kannan type probabilistic contractions. (English) Zbl 06802153 Boll. Unione Mat. Ital. 10, No. 2, 179-189 (2017). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Boll. Unione Mat. Ital. 10, No. 2, 179--189 (2017; Zbl 06802153) Full Text: DOI
Yamaod, Oratai; Sintunavarat, Wutiphol The existence theorem for a solution of a system of integral equations along with cyclical common fixed point technique. (English) Zbl 06789849 J. Fixed Point Theory Appl. 19, No. 2, 1535-1549 (2017). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{O. Yamaod} and \textit{W. Sintunavarat}, J. Fixed Point Theory Appl. 19, No. 2, 1535--1549 (2017; Zbl 06789849) Full Text: DOI
Naraghirad, Eskandar On Bregman best proximity points in Banach spaces. (English) Zbl 06770336 Numer. Funct. Anal. Optim. 38, No. 4, 409-426 (2017). MSC: 47H10 37C25 PDF BibTeX XML Cite \textit{E. Naraghirad}, Numer. Funct. Anal. Optim. 38, No. 4, 409--426 (2017; Zbl 06770336) Full Text: DOI
Kolobov, Victor I.; Reich, Simeon; Zalas, Rafał Weak, strong, and linear convergence of a double-layer fixed point algorithm. (English) Zbl 1369.47072 SIAM J. Optim. 27, No. 3, 1431-1458 (2017). MSC: 47J25 47H09 47N10 65J99 PDF BibTeX XML Cite \textit{V. I. Kolobov} et al., SIAM J. Optim. 27, No. 3, 1431--1458 (2017; Zbl 1369.47072) Full Text: DOI
Gabeleh, Moosa; Julia Mary, P.; Eldred Eldred, A. Anthony; Olela Otafudu, Olivier Cyclic pairs and common best proximity points in uniformly convex Banach spaces. (English) Zbl 1368.90179 Open Math. 15, 711-723 (2017). MSC: 90C48 47H09 46B20 PDF BibTeX XML Cite \textit{M. Gabeleh} et al., Open Math. 15, 711--723 (2017; Zbl 1368.90179) Full Text: DOI
Cheng, Qing Qing; Su, Yong Fu Further investigation on best proximity point of generalized cyclic weak \(\varphi\)-contraction in ordered metric spaces. (English) Zbl 1372.49012 Nonlinear Funct. Anal. Appl. 22, No. 1, 137-146 (2017). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 49J40 47H10 54E35 PDF BibTeX XML Cite \textit{Q. Q. Cheng} and \textit{Y. F. Su}, Nonlinear Funct. Anal. Appl. 22, No. 1, 137--146 (2017; Zbl 1372.49012)
Gabeleh, Moosa Remarks on minimal sets for cyclic mappings in uniformly convex Banach spaces. (English) Zbl 06720210 Numer. Funct. Anal. Optim. 38, No. 3, 360-375 (2017). MSC: 47H09 46B20 47H10 PDF BibTeX XML Cite \textit{M. Gabeleh}, Numer. Funct. Anal. Optim. 38, No. 3, 360--375 (2017; Zbl 06720210) Full Text: DOI
Nguyen Van Dung; Vo Thi Le Hang Best proximity point theorems for cyclic quasi-contraction maps in uniformly convex Banach spaces. (English) Zbl 1452.90318 Bull. Aust. Math. Soc. 95, No. 1, 149-156 (2017). MSC: 90C48 47H09 PDF BibTeX XML Cite \textit{Nguyen Van Dung} and \textit{Vo Thi Le Hang}, Bull. Aust. Math. Soc. 95, No. 1, 149--156 (2017; Zbl 1452.90318) Full Text: DOI
Bakr, Sahar Mohamed Ali Abou Fixed point theorem of weak cyclic contraction types of operators. (English) Zbl 1381.47038 Int. J. Math. Stat. 18, No. 1, 1-11 (2017). MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{S. M. A. A. Bakr}, Int. J. Math. Stat. 18, No. 1, 1--11 (2017; Zbl 1381.47038) Full Text: Link
Nguyen Van Dung; Vo Thi Le Hang Remarks on cyclic contractions in \(b\)-metric spaces and applications to integral equations. (English) Zbl 06679202 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 1, 247-255 (2017). MSC: 47H10 54E35 54H25 PDF BibTeX XML Cite \textit{Nguyen Van Dung} and \textit{Vo Thi Le Hang}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 1, 247--255 (2017; Zbl 06679202) Full Text: DOI
Ansari, Arslan Hojat; Jacob, Geno Kadwin; Marudai, Muthiah; Kumam, Poom On the \(C\)-class functions of fixed point and best proximity point results for generalised cyclic-coupled mappings. (English) Zbl 1426.54029 Cogent Math. 3, Article ID 1235354, 11 p. (2016). MSC: 54H25 PDF BibTeX XML Cite \textit{A. H. Ansari} et al., Cogent Math. 3, Article ID 1235354, 11 p. (2016; Zbl 1426.54029) Full Text: DOI
Gabeleh, M.; Otafudu, Olivier Olela Best proximity point solutions for certain classes of cyclic contractions in ordered metric spaces. (English) Zbl 07041467 Bull. Math. Anal. Appl. 8, No. 3, 35-48 (2016). MSC: 47H10 47A16 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{O. O. Otafudu}, Bull. Math. Anal. Appl. 8, No. 3, 35--48 (2016; Zbl 07041467) Full Text: Link
Jleli, Mohamed; Samet, Bessem An improvement result concerning fixed point theory for cyclic contractions. (English) Zbl 1399.54120 Carpathian J. Math. 32, No. 3, 339-347 (2016). MSC: 54H25 54E40 54E50 39B72 PDF BibTeX XML Cite \textit{M. Jleli} and \textit{B. Samet}, Carpathian J. Math. 32, No. 3, 339--347 (2016; Zbl 1399.54120) Full Text: Link
Ahmadi Baseri, M.; Mazaheri, H.; Narang, T. D. Common best proximity points for cyclic \(\phi\)-contraction maps. (English) Zbl 1386.41011 Int. J. Anal. Appl. 12, No. 1, 1-9 (2016). MSC: 41A65 41A52 46N10 PDF BibTeX XML Cite \textit{M. Ahmadi Baseri} et al., Int. J. Anal. Appl. 12, No. 1, 1--9 (2016; Zbl 1386.41011) Full Text: Link
Magdaş, Adrian A Perov type theorem for cyclic contractions and applications to systems of integral equations. (English) Zbl 1389.54100 Miskolc Math. Notes 17, No. 2, 931-939 (2016). MSC: 54H25 54E40 54E50 45G15 PDF BibTeX XML Cite \textit{A. Magdaş}, Miskolc Math. Notes 17, No. 2, 931--939 (2016; Zbl 1389.54100) Full Text: DOI
Dung, N. V.; Radenović, S. Remarks on theorems for cyclic quasi-contractions in uniformly convex Banach spaces. (English) Zbl 06750262 Kragujevac J. Math. 40, No. 2, 272-279 (2016). MSC: 90C48 47H10 54H25 PDF BibTeX XML Cite \textit{N. V. Dung} and \textit{S. Radenović}, Kragujevac J. Math. 40, No. 2, 272--279 (2016; Zbl 06750262) Full Text: Link
Baseri, M. Ahmadi; Mazaheri, H.; Lee, B. S.; Narang, T. D. Best proximity points theorems for cone generalized cyclic \(\varphi\)-contraction maps in cone metric spaces. (English) Zbl 1370.54023 Adv. Appl. Math. Sci. 15, No. 6, 161-168 (2016). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. A. Baseri} et al., Adv. Appl. Math. Sci. 15, No. 6, 161--168 (2016; Zbl 1370.54023)
Kadwin, J. Geno; Marudai, M. Fixed point and best proximity point results for generalised cyclic coupled mappings. (English) Zbl 1453.54028 Thai J. Math. 14, No. 2, 431-441 (2016). MSC: 54H25 54E40 54C60 PDF BibTeX XML Cite \textit{J. G. Kadwin} and \textit{M. Marudai}, Thai J. Math. 14, No. 2, 431--441 (2016; Zbl 1453.54028) Full Text: Link
Gamal’, Maria F. Examples of cyclic polynomially bounded operators that are not similar to contractions. (English) Zbl 1399.47067 Acta Sci. Math. 82, No. 3-4, 597-628 (2016). MSC: 47A65 47A60 47A16 47A20 47A55 PDF BibTeX XML Cite \textit{M. F. Gamal'}, Acta Sci. Math. 82, No. 3--4, 597--628 (2016; Zbl 1399.47067) Full Text: DOI
Khammahawong, Konrawut; Sa Ngiamsunthorn, Parinya; Kumam, Poom On best proximity points for multivalued cyclic \(F\)-contraction mappings. (English) Zbl 06699931 Int. J. Nonlinear Anal. Appl. 7, No. 2, 363-374 (2016). MSC: 47H10 PDF BibTeX XML Cite \textit{K. Khammahawong} et al., Int. J. Nonlinear Anal. Appl. 7, No. 2, 363--374 (2016; Zbl 06699931) Full Text: DOI
Chinaie, M.; Rajaee, R.; Baseri, M. Ahmadi Some results of best proximity point in regular cone metric spaces. (English) Zbl 06670248 Math. Sci. Appl. E-Notes 4, No. 1, 63-68 (2016). MSC: 41A65 41A52 46N10 PDF BibTeX XML Cite \textit{M. Chinaie} et al., Math. Sci. Appl. E-Notes 4, No. 1, 63--68 (2016; Zbl 06670248) Full Text: Link
Peng, Jian-Wen; Jie, Cheng-Pan; Wong, Mu-Ming Some parallel and cyclic algorithms based on the extragradient method for a system of equilibrium problems. (English) Zbl 06661923 J. Nonlinear Convex Anal. 17, No. 9, 1867-1884 (2016). MSC: 47J20 49J40 PDF BibTeX XML Cite \textit{J.-W. Peng} et al., J. Nonlinear Convex Anal. 17, No. 9, 1867--1884 (2016; Zbl 06661923) Full Text: Link
Radenović, Stojan Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension. (English) Zbl 06651316 Bull. Allahabad Math. Soc. 31, No. 1, 39-55 (2016). MSC: 47H10 54H25 54E50 PDF BibTeX XML Cite \textit{S. Radenović}, Bull. Allahabad Math. Soc. 31, No. 1, 39--55 (2016; Zbl 06651316)
Sanhan, Sujitra; Mongkolkeha, Chirasak Convergence and best proximity points for Berinde’s cyclic contraction with proximally complete property. (English) Zbl 1382.54031 Math. Methods Appl. Sci. 39, No. 16, 4866-4873 (2016). MSC: 54H25 54E40 41A50 PDF BibTeX XML Cite \textit{S. Sanhan} and \textit{C. Mongkolkeha}, Math. Methods Appl. Sci. 39, No. 16, 4866--4873 (2016; Zbl 1382.54031) Full Text: DOI
Komal, Somayya; Kumam, Poom Global optimization using \(\alpha\)-ordered proximal contractions in metric spaces with partial orders. (English) Zbl 1350.54032 Appl. Gen. Topol. 17, No. 2, 173-183 (2016). MSC: 54H25 58C30 47H10 PDF BibTeX XML Cite \textit{S. Komal} and \textit{P. Kumam}, Appl. Gen. Topol. 17, No. 2, 173--183 (2016; Zbl 1350.54032) Full Text: DOI
Liu, Jing; Song, Meimei Fixed point theorems for three maps in ordered \(G\)-metric spaces. (Chinese. English summary) Zbl 1363.54058 Acta Sci. Nat. Univ. Nankaiensis 49, No. 1, 105-112 (2016). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{J. Liu} and \textit{M. Song}, Acta Sci. Nat. Univ. Nankaiensis 49, No. 1, 105--112 (2016; Zbl 1363.54058)
Sintunavarat, Wutiphol; Kumam, Poom Best proximity points theorems for generalized Mizoguchi-Takahashi’s contraction pairs. (English) Zbl 1347.41046 J. Nonlinear Convex Anal. 17, No. 7, 1345-1361 (2016). MSC: 41A65 46B20 47H09 47H10 PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{P. Kumam}, J. Nonlinear Convex Anal. 17, No. 7, 1345--1361 (2016; Zbl 1347.41046) Full Text: Link
Mirdamadi, Fahimeh Best proximity point results for set-valued maps in metric spaces. (English) Zbl 06629843 J. Nonlinear Convex Anal. 17, No. 6, 1223-1230 (2016). MSC: 47H10 54H25 54C60 PDF BibTeX XML Cite \textit{F. Mirdamadi}, J. Nonlinear Convex Anal. 17, No. 6, 1223--1230 (2016; Zbl 06629843) Full Text: Link
Magdaş, Adrian A fixed point theorem for Ćirić type multivalued operators satisfying a cyclical condition. (English) Zbl 06629833 J. Nonlinear Convex Anal. 17, No. 6, 1109-1116 (2016). MSC: 47H10 54H25 47H04 PDF BibTeX XML Cite \textit{A. Magdaş}, J. Nonlinear Convex Anal. 17, No. 6, 1109--1116 (2016; Zbl 06629833) Full Text: Link
He, Fei; Chen, Alatancang Fixed points for cyclic \(\varphi\)-contractions in generalized metric spaces. (English) Zbl 1343.47059 Fixed Point Theory Appl. 2016, Paper No. 67, 12 p. (2016). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{F. He} and \textit{A. Chen}, Fixed Point Theory Appl. 2016, Paper No. 67, 12 p. (2016; Zbl 1343.47059) Full Text: DOI
Abkar, Ali; Moezzifar, Narges; Azizi, Azizollah; Shahzad, Naseer Best proximity point theorems for cyclic generalized proximal contractions. (English) Zbl 1342.41037 Fixed Point Theory Appl. 2016, Paper No. 66, 19 p. (2016). MSC: 41A65 46B20 47H10 PDF BibTeX XML Cite \textit{A. Abkar} et al., Fixed Point Theory Appl. 2016, Paper No. 66, 19 p. (2016; Zbl 1342.41037) Full Text: DOI
Pasicki, Lech The Boyd-Wong idea extended. (English) Zbl 1342.54032 Fixed Point Theory Appl. 2016, Paper No. 63, 5 p. (2016). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{L. Pasicki}, Fixed Point Theory Appl. 2016, Paper No. 63, 5 p. (2016; Zbl 1342.54032) Full Text: DOI
Reich, Simeon; Zalas, Rafał A modular string averaging procedure for solving the common fixed point problem for quasi-nonexpansive mappings in Hilbert space. (English) Zbl 1348.47065 Numer. Algorithms 72, No. 2, 297-323 (2016). MSC: 47J25 47H09 47H10 47N10 PDF BibTeX XML Cite \textit{S. Reich} and \textit{R. Zalas}, Numer. Algorithms 72, No. 2, 297--323 (2016; Zbl 1348.47065) Full Text: DOI
Suanoom, Cholatis; Klin-eam, Chakkrid; Suantai, Suthep Dislocated quasi-b-metric spaces and fixed point theorems for cyclic weakly contractions. (English) Zbl 1348.54063 J. Nonlinear Sci. Appl. 9, No. 5, 2779-2788 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{C. Suanoom} et al., J. Nonlinear Sci. Appl. 9, No. 5, 2779--2788 (2016; Zbl 1348.54063) Full Text: DOI Link
Abbas, Mujahid; Latif, Abdul; Suleiman, Yusuf I. Fixed points for cyclic \(R\)-contractions and solution of nonlinear Volterra integro-differential equations. (English) Zbl 06581907 Fixed Point Theory Appl. 2016, Paper No. 61, 9 p. (2016). MSC: 47H10 47H09 54H25 PDF BibTeX XML Cite \textit{M. Abbas} et al., Fixed Point Theory Appl. 2016, Paper No. 61, 9 p. (2016; Zbl 06581907) Full Text: DOI
Latif, Abdul; Ninsri, Aphinat; Sintunavarat, Wutiphol The \((\alpha, \beta)\)-generalized convex contractive condition with approximate fixed point results and some consequence. (English) Zbl 1345.54057 Fixed Point Theory Appl. 2016, Paper No. 58, 14 p. (2016). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{A. Latif} et al., Fixed Point Theory Appl. 2016, Paper No. 58, 14 p. (2016; Zbl 1345.54057) Full Text: DOI