×

Minimal average degree aberration and the state polytope for experimental designs. (English) Zbl 1440.62304

Summary: For a particular experimental design, there is interest in finding which polynomial models can be identified in the usual regression set up. The algebraic methods based on Gröbner bases provide a systematic way of doing this. The algebraic method does not, in general, produce all estimable models but it can be shown that it yields models which have minimal average degree in a well-defined sense and in both a weighted and unweighted version. This provides an alternative measure to that based on “aberration” and moreover is applicable to any experimental design. A simple algorithm is given and bounds are derived for the criteria, which may be used to give asymptotic Nyquist-like estimability rates as model and sample sizes increase.

MSC:

62K15 Factorial statistical designs
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)

Software:

SINGULAR; CoCoA; Maple
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Babson E., Onn S., Thomas R. (2003) The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Advances in Applied Mathematics 30(3): 529–544 · Zbl 1039.13018 · doi:10.1016/S0196-8858(02)00509-2
[2] Balakrishnan N., Yang P. (2006) Connections between the resolutions of general two-level factorial designs. Annals of the Institute of Statistical Mathematics 58: 595–608 · Zbl 1100.62075 · doi:10.1007/s10463-006-0033-0
[3] Berstein Y., Lee J., Maruri-Aguilar H., Onn S., Riccomagno E., Weismantel R., Wynn H. (2008) Nonlinear matroid optimization and experimental design. SIAM Journal on Discrete Mathematics 22(3): 901–919 · Zbl 1198.05024 · doi:10.1137/070696465
[4] Box G., Hunter J. (1961) The 2 k-p fractional factorial designs. I. Technometrics 3: 311–351 · Zbl 0100.14406
[5] Box G., Hunter J. (1961) The 2 k-p fractional factorial designs. II. Technometrics 3: 449–458 · Zbl 0100.14406
[6] Box G., Wilson K. (1951) On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society Series B 13(1): 1–45 · Zbl 0043.34402
[7] Buchberger, B. (1966). On finding a vector space basis of the residue class ring modulo a zero dimensional polynomial ideal (in German), Ph.D. thesis. Department of Mathematics, University of Innsbruck.
[8] Caboara, M., Pistone, G., Riccomagno, E., Wynn, H. (1997). The fan of an experimental design. SCU Research Report 33. Department of Statistics, University of Warwick.
[9] Chen, H., Hedayat, A. S. (1998). Some recent advances in minimum aberration designs. In New developments and applications in experimental design (Seattle, WA, 1997). IMS lecture notes monography series (Vol. 34, pp. 186–198). Hayward: Institute of Mathematical Statistics.
[10] Chen H.H., Cheng C.-S. (2004) Aberration, estimation capacity and estimation index. Statistica Sinica 14(1): 203–215 · Zbl 1035.62080
[11] Cheng C.-S., Mukerjee R. (1998) Regular fractional factorial designs with minimum aberration and maximum estimation capacity. The Annals of Statistics 26(6): 2289–2300 · Zbl 0927.62076 · doi:10.1214/aos/1024691471
[12] CoCoATeam. (2007). CoCoA: A system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it .
[13] Corteel S., Rémond G., Schaeffer G., Thomas H. (1999) The number of plane corner cuts. Advances in Applied Mathematics 23(1): 49–53 · Zbl 0955.52009 · doi:10.1006/aama.1999.0646
[14] Cox D., Little J., O’Shea D. (1997) Ideals, varieties, and algorithms (2nd ed). Springer, New York
[15] Cox D., Little J., O’Shea D. (2005) Using algebraic geometry, graduate texts in mathematics (Vol. 185, 2nd ed). Springer, New York
[16] Evangelaras H., Koukouvinos C. (2006) A comparison between the Gröbner bases approach and hidden projection properties in factorial designs. Computational Statistics & Data Analysis 50(1): 77–88 · Zbl 1429.62348 · doi:10.1016/j.csda.2003.11.022
[17] Faugère J., Gianni P., Lazard D., Mora T. (1993) Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation 16(4): 329–344 · Zbl 0805.13007 · doi:10.1006/jsco.1993.1051
[18] Fries A., Hunter W. (1980) Minimum aberration 2 k-p designs. Technometrics 22(4): 601–608 · Zbl 0453.62063
[19] Fukuda K., Jensen A.N., Thomas R.R. (2007) Computing Gröbner fans. Mathematics of Computation 76(260): 2189–2212 (electronic) · Zbl 1119.13026 · doi:10.1090/S0025-5718-07-01986-2
[20] Greuel, G., Pfister, G., Schönemann, H. (2005). Singular 3.0. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de . · Zbl 1344.13002
[21] Holliday T., Pistone G., Riccomagno E., Wynn H. (1999) The application of computational algebraic geometry to the analysis of designed experiments: A case study. Computational Statistics 14(2): 213–231 · Zbl 0933.62070 · doi:10.1007/s001800050014
[22] Li W., Lin D.K.J., Ye K.Q. (2003) Optimal foldover plans for two-level nonregular orthogonal designs. Technometrics 45(4): 347–351 · doi:10.1198/004017003000000177
[23] Maruri-Aguilar, H. (2007). Algebraic statistics in experimental design. Ph.D. thesis. Department of Statistics, University of Warwick.
[24] McKay M.D., Beckman R.J., Conover W.J. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2): 239–245 · Zbl 0415.62011
[25] Monagan M.B., Geddes K.O., Heal K.M., Labahn G., Vorkoetter S.M., McCarron J., DeMarco P. (2005) Maple 10 programming guide. Maplesoft, Waterloo, ON
[26] Mora T., Robbiano L. (1988) The Gröbner fan of an ideal. Journal of Symbolic Computation 6(2–3): 183–208 (Computational aspects of commutative algebra) · Zbl 0668.13017 · doi:10.1016/S0747-7171(88)80042-7
[27] Müller I. (2003) Corner cuts and their polytopes. Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry 44(2): 323–333 · Zbl 1042.52012
[28] Onn S., Sturmfels B. (1999) Cutting corners. Advances in Applied Mathematics 23(1): 29–48 · Zbl 0955.52008 · doi:10.1006/aama.1999.0645
[29] Peixoto J. (1987) Hierarchical variable selection in polynomial regression models. The American Statistician 41(4): 311–313
[30] Pistone G., Riccomagno E., Wynn H.P. (2001) Algebraic statistics, monographs on statistics and applied probability (Vol. 89). Chapman & Hall/CRC, Boca Raton
[31] Pistone, G., Riccomagno, E., Rogantin, M. (2008). Algebraic statistics methods in DOE (with a contribution by Maruri-Aguilar, H.). In L. Pronzato, A. A. Zhigljavsky (Eds.), In search for optimality in optimization and statistics. Berlin: Springer.
[32] Pistone G., Wynn H. (1996) Generalised confounding with Gröbner bases. Biometrika 83(3): 653–666 · Zbl 0928.62060 · doi:10.1093/biomet/83.3.653
[33] Sturmfels B. (1996) Gröbner bases and convex polytopes. University lecture series (Vol 8). American Mathematical Society, Providence · Zbl 0856.13020
[34] Wagner U. (2002) On the number of corner cuts. Advances in Applied Mathematics 29(2): 152–161 · Zbl 1016.52004 · doi:10.1016/S0196-8858(02)00014-3
[35] Wang J.C., Wu C.-F.J. (1995) A hidden projection property of Plackett–Burman and related designs. Statistica Sinica 5(1): 235–250 · Zbl 0824.62074
[36] Wu H., Wu C.F.J. (2002) Clear two-factor interactions and minimum aberration. The Annals of Statistics 30(5): 1496–1511 · Zbl 1015.62083 · doi:10.1214/aos/1035844985
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.