×

Incorporating crossed classification credibility into the Lee-Carter model for multi-population mortality data. (English) Zbl 1448.91257

The paper focuses on a crossed classification credibility structuring of the Lee-Carter model, in the case of multi-population mortality schemes. After presenting notations and basic concepts concerning crossed classification credibility modeling, the classic Lee-Carter model is revisited and reformulated according to an approach based on crossed classification credibility formulation for multi-populations. This modeling choice constitutes the main advancement compared to the classic Lee-Carter model, where the time index follows a time series process. As part of this approach, the parameter estimation procedure is presented in detail, as well as the mortality forecasting process appropriate to the model. Numerical illustrations concretely show the application and development potential of the model. Finally, a stochastic version of the model is proposed.

MSC:

91G05 Actuarial mathematics
91D20 Mathematical geography and demography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bauwelinckx, T.; Goovaerts, M. J., On a multilevel hierarchical credibility algorithm, Insurance Math. Econom., 9, 221-228 (1990) · Zbl 0714.62100
[2] Bozikas, A.; Pitselis, G., An empirical study on stochastic mortality modelling under the age-period-cohort framework: The case of Greece with applications to Insurance Pricing, Risks, 6, 2, 44 (2018)
[3] Bozikas, A.; Pitselis, G., Credible regression approaches to forecast mortality for populations with Limited data, Risks, 7, 1, 27 (2019)
[4] Bühlmann, H., Experience rating and credibility, Astin Bull., 4, 3, 199-207 (1967)
[5] Bühlmann, H.; Gisler, A., A Course in Credibility Theory and Its Applications (2005), Springer: Springer The Netherlands · Zbl 1108.91001
[6] Bühlmann, H.; Straub, E., Glaubwürdigkeit für schadensätze, Bull. Swiss Assoc. Actuar., 70, 111-133 (1970) · Zbl 0197.46502
[7] Cairns, A. J.G.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, J. Risk Insurance, 73, 4, 687-718 (2006)
[8] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Khalaf-Allah, M., Bayesian stochastic mortality modeling for two populations, Astin Bull., 41, 1, 29-59 (2011)
[9] Carter, L. R.; Lee, R. D., Modeling and forecasting US sex differentials in mortality, Int. J. Forecast., 8, 3, 393-411 (1992)
[10] Chen, H.; MacMinn, R.; Sun, T., Multi-population mortality models: A factor copula approach, Insurance Math. Econom., 63, 135-146 (2015) · Zbl 1348.91131
[11] D’Amato, V.; Haberman, S.; Piscopo, G.; Russolillo, M.; Trapani, L., Detecting common Longevity trends by a multiple population approach, N. Am. Actuar. J., 18, 1, 139-149 (2014) · Zbl 1412.91041
[12] Dannenburg, D. R., Basic Actuarial Credibility Models-Evaluations and Extensions (1996), Tinbergen Institute: Tinbergen Institute Amsterdam, (Ph.D. thesis)
[13] Dannenburg, D. R.; Kaas, R.; Goovaerts, M. J., Practical Actuarial Credibility Models (1996), Institute of Actuarial Science and Econometrics of the University of Amsterdam · Zbl 0905.62101
[14] Goovaerts, M. J.; Kaas, R.; Van Heerwaarden, A. E.; Bauwelinckx, T., Effective Actuarial Methods (1990), North-Holland
[15] Goulet, V., Principles and Application of Credibility theory, J. Actuar. Pract., 6, 1998, 5-62 (1998) · Zbl 1071.91513
[16] Hardy, M. R.; Panjer, H. H., A credibility approach to mortality risk, Astin Bull., 28, 2, 269-283 (1998) · Zbl 1162.91415
[17] Hatzopoulos, P.; Haberman, S., A parameterized approach to modeling and forecasting mortality, Insurance Math. Econom., 44, 1, 103-123 (2009) · Zbl 1156.91394
[18] Human Mortality Database, 2019. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). URL www.mortality.org.
[19] Hyndman, R. J.; Khandakar, Y., Automatic time series forecasting: The forecast package for R, J. Stat. Softw., 26, 3 (2008)
[20] Jewell, W. S., The use of collateral data in credibility theory: a hierarchical model, IIASA Res. Memo., June, 1-16 (1975) · Zbl 0392.62086
[21] Kleinow, T., A common age effect model for the mortality of multiple populations, Insurance Math. Econom., 63, 147-152 (2015) · Zbl 1348.91233
[22] Klugman, S. A.; Panjer, H. H.; Willmot, G. E., Loss Models: From Data to Decisions, Vol. 715 (2012), John Wiley & Sons: John Wiley & Sons New York, John Wiley & Sons · Zbl 1272.62002
[23] Lee, R. D.; Carter, L. R., Modeling and Forecasting U.S. Mortality, J. Amer. Stat. Assoc., 87, 419, 659-671 (1992) · Zbl 1351.62186
[24] Li, J. S.H.; Hardy, M. R., Measuring basis risk in Longevity Hedges, N. Am. Actuar. J., 15, 2, 177-200 (2011) · Zbl 1228.91042
[25] Li, N.; Lee, R., Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Demography, 42, 3, 575-594 (2005)
[26] Li, J. S.H.; Zhou, R.; Hardy, M., A step-by-step guide to building two-population stochastic mortality models, Insurance Math. Econom., 63, 121-134 (2015) · Zbl 1348.91164
[27] Mitchell, D.; Brockett, P.; Mendoza-Arriaga, R.; Muthuraman, K., Modeling and forecasting mortality rates, Insurance Math. Econom., 52, 2, 275-285 (2013) · Zbl 1284.91259
[28] Plat, R., On stochastic mortality modeling, Insurance Math. Econom., 45, 3, 393-404 (2009) · Zbl 1231.91227
[29] R: A Language and Environment for Statistical Computing (2019), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria, URL https://www.R-project.org/
[30] Renshaw, A. E.; Haberman, S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance Math. Econom., 38, 3, 556-570 (2006) · Zbl 1168.91418
[31] Schinzinger, E.; Denuit, M. M.; Christiansen, M. C., A multivariate evolutionary credibility model for mortality improvement rates, Insurance Math. Econom., 69, 70-81 (2016) · Zbl 1369.91097
[32] Searle, S. R.; Casella, G.; McCulloch, C. E., Variance components (1992), John Wiley & Sons · Zbl 0850.62007
[33] Shang, H. L., Mortality and life expectancy forecasting for a group of populations in developed countries: a multilevel functional data method, Ann. Appl. Stat., 10, 3, 1639-1672 (2016) · Zbl 1391.62249
[34] Taylor, G. C., Credibility analysis of a general hierarchical model, Scand. Actuar. J., 1979, 1, 1-12 (1979) · Zbl 0399.62105
[35] Tsai, C. C.L.; Lin, T., A Bühlmann credibility approach to modeling mortality rates, N. Am. Actuar. J., 21, 2, 204-227 (2017) · Zbl 1414.91237
[36] Tsai, C. C.L.; Lin, T., Incorporating the Bühlmann credibility into mortality models to improve forecasting performances, Scand. Actuar. J., 5, 419-440 (2017) · Zbl 1401.91198
[37] Tsai, C. C.L.; Wu, A. D., Incorporating hierarchical credibility theory into modelling of multi-country mortality rates, Insurance Math. Econom., 91, 37-54 (2020) · Zbl 1435.91160
[38] Tsai, C. C.L.; Wu, A. D., Bühlmann Credibility-based approaches to modeling mortality rates for multiple populations, N. Am. Actuar. J., 24, 2, 290-315 (2020) · Zbl 1455.91229
[39] Tsai, C. C.L.; Zhang, Y., A multi-dimensional Bühlmann credibility approach to modeling multi-population mortality rates, Scand. Actuar. J., 5, 406-431 (2019) · Zbl 1411.91317
[40] Wan, C.; Bertschi, L., Swiss coherent mortality model as a basis for developing longevity de-risking solutions for swiss pension funds: A practical approach, Insurance Math. Econom., 63, 66-75 (2015) · Zbl 1348.62248
[41] Wang, H. C.; Yue, C. S.J.; Chong, C. T., Mortality models and longevity risk for small populations, Insurance Math. Econom., 78, 351-359 (2018) · Zbl 1400.91254
[42] Wilson, C., On the scale of global Demographic Convergence 1950-2000, Popul. Dev. Rev., 27, 155-171 (2001)
[43] Zehnwirth, B., Conditional linear Bayes rules for hierarchical models, Scand. Actuar. J., 3-4, 143-154 (1982) · Zbl 0497.62031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.