×

Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes. (English) Zbl 1351.76070

Summary: A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
58A10 Differential forms in global analysis
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Perot, J. B., Discrete conservation properties of unstructured mesh schemes, Annu. Rev. Fluid Mech., 43, 299-318 (2011) · Zbl 1299.76127
[2] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 12, 2182-2189 (1965) · Zbl 1180.76043
[3] Nicolaides, R., Flow discretization by complementary volume techniques, (9th AIAA Computational Fluid Dynamics Conference, vol. 1 (1989)), 464-470
[4] Hall, C.; Cavendish, J.; Frey, W., The dual variable method for solving fluid flow difference equations on Delaunay triangulations, Comput. Fluids, 20, 2, 145-164 (1991) · Zbl 0729.76047
[5] Nicolaides, R. A., Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29, 1, 32-56 (1992) · Zbl 0745.65063
[6] Cavendish, J.; Hall, C.; Porsching, T., Solution of incompressible Navier-Stokes equations on unstructured grids using dual tessellations, Int. J. Numer. Methods Fluids, 2, 6, 483-502 (1992)
[7] Cavendish, J.; Hall, C.; Porsching, T., A complementary volume approach for modelling three-dimensional Navier-Stokes equations using dual Delaunay/Voronoi tessellations, Int. J. Numer. Methods Fluids, 4, 4, 329-345 (1994) · Zbl 0815.76041
[8] Choudhury, S.; Nicolaides, R., Discretization of incompressible vorticity-velocity equations on triangular meshes, Int. J. Numer. Methods Fluids, 11, 6, 823-833 (1990) · Zbl 0704.76016
[9] Nicolaides, R., The covolume approach to computing incompressible flow, (Gunzburger, M.; Nicolaides, R., Incompressible Computational Fluid Dynamics (1993)) · Zbl 1189.76392
[10] Perot, B., Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys., 159, 1, 58-89 (2000) · Zbl 0972.76068
[11] Zhang, X.; Schmidt, D.; Perot, B., Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics, J. Comput. Phys., 175, 2, 764-791 (2002) · Zbl 1018.76036
[12] Perot, J. B.; Subramanian, V., Discrete calculus methods for diffusion, J. Comput. Phys., 224, 1, 59-81 (2007) · Zbl 1120.65325
[13] Elcott, S.; Tong, Y.; Kanso, E.; Schröder, P.; Desbrun, M., Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph., 26, 1, 4 (2007)
[14] Mullen, P.; Crane, K.; Pavlov, D.; Tong, Y.; Desbrun, M., Energy-preserving integrators for fluid animation, ACM Trans. Graph., 28, 3, 38 (2009)
[15] Hirani, A. N., Discrete exterior calculus (2003), California Institute of Technology, Ph.D. thesis
[16] Desbrun, M.; Hirani, A. N.; Leok, M.; Marsden, J. E., Discrete exterior calculus
[17] Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H., Numerical method for Darcy flow derived using Discrete Exterior Calculus, Int. J. Comput. Methods Eng. Sci. Mech., 16, 3, 151-169 (2015)
[18] Perot, J. B.; Zusi, C. J., Differential forms for scientists and engineers, J. Comput. Phys., 257, 1373-1393 (2014) · Zbl 1351.53001
[19] Abraham, R.; Marsden, J. E.; Ratiu, T., Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences, vol. 75 (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0875.58002
[20] Hirani, A. N.; Kalyanaraman, K.; VanderZee, E. B., Delaunay Hodge star, Comput. Aided Des., 45, 2, 540-544 (2013)
[21] Flanders, H., Differential Forms with Applications to the Physical Sciences (2012), Courier Corporation · Zbl 0112.32003
[22] Chang, W.; Giraldo, F.; Perot, B., Analysis of an exact fractional step method, J. Comput. Phys., 180, 1, 183-199 (2002) · Zbl 1130.76394
[23] Arnold, D.; Falk, R.; Winther, R., Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc., 47, 2, 281-354 (2010) · Zbl 1207.65134
[24] Arnold, D. N.; Falk, R. S.; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155 (2006) · Zbl 1185.65204
[25] Ghia, U.; Ghia, K. N.; Shin, C., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[26] Green, A.; Taylor, G., Mechanism of the production of small eddies from larger ones, (Proc. R. Soc. A, vol. 158 (1937)), 499-521 · JFM 63.1358.03
[27] Connors, J., Convergence analysis and computational testing of the finite element discretization of the Navier-Stokes alpha model, Numer. Methods Partial Differ. Equ., 26, 6, 1328-1350 (2010) · Zbl 1426.76239
[28] VanderZee, E.; Hirani, A. N.; Guoy, D.; Ramos, E., Well-centered triangulation, SIAM J. Sci. Comput., 31, 6, 4497-4523 (2010) · Zbl 1253.65030
[29] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 2, 257-283 (1989) · Zbl 0681.76030
[30] McKenzie, A., HOLA: a high-order Lie advection of discrete differential forms, with applications in fluid dynamics (2007), California Institute of Technology, Ph.D. thesis
[31] Pavlov, D.; Mullen, P.; Tong, Y.; Kanso, E.; Marsden, J. E.; Desbrun, M., Structure-preserving discretization of incompressible fluids, Phys. D, Nonlinear Phenom., 240, 6, 443-458 (2011) · Zbl 1208.37047
[32] Polvani, L. M.; Dritschel, D. G., Wave and vortex dynamics on the surface of a sphere, J. Fluid Mech., 255, 35-64 (1993) · Zbl 0793.76022
[33] Vankerschaver, J.; Leok, M., A novel formulation of point vortex dynamics on the sphere: geometrical and numerical aspects, J. Nonlinear Sci., 24, 1, 1-37 (2014) · Zbl 1347.37132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.